On integrating Software-Defined Networking
within existing routing systems

Laurent Vanbever

Princeton University

Google, Mountain View

November, 15 2013

On integrating Software-Defined Networking
within existing routing systems

] SDN-controlled routers

don’t trash, recycle

2 SDN-controlled IGP

fine-grained traffic-engineering

3 SDN-controlled BGP

inter domain bonanza

On integrating Software-Defined Networking
within existing routing systems

] SDN-controlled routers

don’t trash, recycle

SDN-controlled IGP

fine-grained traffic-engineering

SDN-controlled BGP

inter domain bonanza

Today’s networks are managed indirectly

Given network-wide forwarding requirements
Traffic from i to j should flow along path P1

Traffic from k to / should flow along path P2

operators’ job Configure each equipment such that
they compute (locally) compatible forwarding entries

Today’s networks are managed indirectly,
device-by-device
Given network-wide forwarding requirements
Traffic from i to j should flow along path PI

Traffic from k to / should flow along path P2

operators’ job Configure each equipment such that
they compute (locally) compatible forwarding entries

Today’s networks are managed indirectly,
device-by-device, using arcane configuration languages

Control-Plane Control-Plane Control-Plane

Data-Plane Data-Plane Data-Plane

Cisco Juniper Alcatel

Today’s networks are managed indirectly,
device-by-device, using arcane configuration languages

configuration Cisco 10S Juniper JunOS Alcatel TimOS
“languages”
Control-Plane Control-Plane Control-Plane
Data-Plane Data-Plane Data-Plane

Cisco Juniper Alcatel

In contrast, SDN simplifies network management...

...by directly programming forwarding entries,
using a logically-centralized controller and an open API

Control-Plane SDN Controller
Standardized API

(e.g., OpenFlow)

Forwarding entries

* *
> O
* N
A4 .
E
Q
*
\d
Q
*
0‘.
‘0

Data-Plane Data-Plane Data-Plane
= / r=—"1
] L]

NEC HP NoviSwitch

=

The bad news is that SDN requires compatible devices...

Wouldn’t it be great to manage
an existing network “a la SDN™?

Control-Plane SDN Controller

Lo 4
3
.

Forwarding entries

R
Control-Plane.| Control-Plane |/ [~.Control-Plane
'y A ‘Q
Data-Plane Data-Plane Data-Plane

Cisco Juniper Alcatel

To do that, we need an open API to
program forwarding entries in a router

Control-Plane SDN Controller

7 O“:o“‘ ?
25
Control-Plane.| Control-Plane |/ [~.Control-Plane
'y A ‘Q
Data-Plane Data-Plane Data-Plane

Cisco Juniper Alcatel

Routing protocols are good candidates to act as API

Routing protocols

messages are standardized

all boxes must speak the same language

behaviors are well-defined and understood

e.d., shortest-path routing

implementations are widely available

a vast majority (if not all) Cisco boxes supports OSPF

A routing protocol takes routing messages as input

and computes forwarding paths as output

Routing
Messages

MPLS

OSPF

>

BGP

Forwarding

Paths
>

A routing protocol is thus a function
from input messages to forwarding paths

Routing
Messages

h(x)

g(x)

>

f(x)

>

Forwarding
Paths

Functions are well known

h(x)
> >
Routing . g(x) Forwarding
Messages f(x) Paths
> >
Known

(Dijkstra, BGP Decision Process...)

Forwarding paths are also known,
from network-wide requirements

N(X) s nnnnees
- g(x) . N
Routing Forwarding
Messages f(x) N Paths
Knowhn

(Traffic Engineering,
Capacity Planning...)

Given a forwarding path and a function (i.e., protocol),
can we automatically find the corresponding input?

MPLS
g OSPF >

Routing > Forwarding
Messages BGP . Paths

v Yy

Inverse functions

The type of input to be computed depends
on the routing protocol

Type Algorithm Input

IGP Link-State Dijkstra Network topology

BGP Path-Vector Decision Process Received routes

On integrating Software-Defined Networking
within existing routing systems

SDN-controlled routers

don’t trash, recycle

2 SDN-controlled IGP

fine-grained traffic-engineering

SDN-controlled BGP

inter domain bonanza

Joint work with

Stefano Vissicchio, Olivier Bonaventure, Jennifer Rexford

Traffic Engineering techniques differ in terms of
ease of use, functionality and support

IGP MPLS SDN
(link reweight) (RSVP-TE)

sighaling

expressiveness

device support

Traffic Engineering techniques differ in terms of
ease of use, functionality and support

IGP MPLS SDN
(link reweight) (RSVP-TE)
sighaling no yes no
expressiveness low high high

shortest path

device support excellent good poor
require MPLS new hardware

In a SDN-controlled IGP, a controller presents a virtual
topology to the routers to force them to use given paths

Given a set of forwarding paths,

augment an IGP topology with virtual

nodes
links and weights

destinations

such that routers compute compatible paths

SDN-controlled IGP combines
the benefits of each technique

SDN-controlled IGP

signaling

expressiveness

device support

SDN-controlled IGP combines
the benefits of each technique

SDN-controlled IGP

sighaling no

expressiveness high

device support excellent

SDN-controlled IGP combines
the benefits of each technique

SDN-controlled IGP

signaling no

expressiveness high

device support excellent

SDN-controlled IGP enables
fine-grained IP traffic control

SDN-controlled IGP enables to

steer traffic on non-shortest paths
create ECMP paths (on a per-destination basis)

provision backup paths

in a centralized manner, on existing network

Consider this network where a source
sends traffic to 2 destinations

10 I

source destination

traffic flow

As congestion appears on the (C,D) link, operators
might want to move away the orange flow to A

initial desired

Moving only the orange flow to A is impossible with an
IGP as both destinations are connected to D

initial desired
e N —r
10 / 10 /

3 3

impossible to achieve by
reweighing the IGP links

We can attract the orange flow from C by adding
a virtual node announcing the orange destination

Traffic to Vi is physically sent to A

Consider another network
with 2 sources and destinations

10 10

Consider another network
with 2 sources and destinations

link capacity

10 10 100 Mbps 100 Mbps

10 10 100 Mpbs 100 Mbps

100 Mbps

The red and orange flows are limited to 100Mbps

10

10

10

10

link capacity

100 Mbps 100 Mbps

100 Mpbs 100 Mbps

O ®

100 Mbps

If the two flows do not overlap all the time,

using ECMP would enable each flow to use 200Mbps

link capacity

100 Mbps 100 Mbps

100 Mpbs 100 Mbps

O ®

100 Mbps

If the two flows do not overlap all the time,
using ECMP would enable each flow to use 200Mbps

link capacity
/ \ 200 Mbps 100 Mbps 100 Mbps
B C B C
100 Mpbs 100 Mbps

100 Mbps

Unfortunately, this is impossible to do with an IGP
as both destinations are connected to the same node

impossible

In contrast, SDN-controlled IGP enables
to create ECMP path on a per-destination basis

wanted

In contrast, SDN-controlled IGP enables
to create ECMP path on a per-destination basis

achieved ¢/ virtual topology
o5\ o
5 :';‘" R 2 5
2 "N

A SDN-enabled IGP is powerful

Theorem A SDN-enabled IGP can make the routers use

any set of non-contradictory paths

A SDN-enabled IGP is powerful

Theorem A SDN-enabled IGP can make the routers use

any set of non-contradictory paths

A SDN-enabled IGP is powerful

Theorem A SDN-enabled IGP can make the routers use

any set of non-contradictory paths

—— any path is loop-free

(e.g., [s1, a, b, a, d] is not possible)

—— paths are consistent

(e.g. [s1, a, b, d] and
[s2, b, a, d] are inconsistent)

Given a physical topology and a set of path requirements,
a linear program computes a virtual topology

physical paths requirements Integer virtual
topology Linear Program topology

[RA, RB, RC, RD]

+ ECMP(— Optimizer —
[RX, RY, RZ |,

[RX, RW, RZ])

[RI, RJ, RK], bckp

[RI, RL, RK] minimize topology size

SDN-enabled IGP is implementable in practice

SDN-enabled IGP requires to

listen to the IGP traffic

simple, just establish an IGP adjacency

inject fake IGP packets over an adjacency

effectively, executing a “controlled” IGP attack

map virtual nodes to physical link

simple protocol change or use a few SDN-enabled devices

On integrating Software-Defined Networking
within existing routing systems

SDN-controlled routers

don’t trash, recycle

SDN-controlled IGP

fine-grained traffic-engineering

3 SDN-controlled BGP

inter domain bonanza

Joint work with

Arpit Gupta, Muhammad Shahbaz, Hyojoon Kim,
Russ Clark, Nick Feamster, Jennifer Rexford and Scott Shenker

BGP can be (and is already) used as a
centralized provisioning interface

Three examples of SDN-enabled BGP initiatives

Route Control Platform [INSDIOS5]
BGP Route Injection [LINX69]
A BGP-Only SDN Controller for [INANOGS5 8]

Large-Scale Data Centers

So far, existing initiatives have focused on iBGP

iIBGP Route Control Platform
iIBGP BGP Route Injection
iBGP A BGP-Only SDN Controller for

Large-Scale Data Centers

Managing eBGP is also painful and
would also benefit from SDN-like mechanisms

Inflexible (control-plane and data-plane)

BGP decision process and destination-based fwd

Non-deterministic

one can only “influence” remote decisions

Geographically-limited

one can only “do” something where it has an eBGP session

We combine BGP with SDN-enabled devices
at Internet eXchange Points (IXP)

Augment the IXP data-plane with SDN capabilities

keeping default forwarding and routing behavior

Enable fine-grained inter domain policies

bringing new features while simplifying operations

We combine BGP with SDN-enabled devices
at Internet eXchange Points (IXP)

— Augment the IXP data-plane with SDN capabilities

keeping default forwarding and routing behavior

— Enable fine-grained inter domain policies

bringing new features while simplifying operations

... with scalability in mind

supporting the load of a large IXP

An IXP is a large L2 domain where
participant routers exchange routes using BGP

Edge router

eBGP sessions |

------------- /
T l— IXP Switching Fabric

b
bl
e
L]
....
]
.
L
.
.
g
.

eBGP route \ |

To alleviate the need of establishing eBGP sessions,
IXP often provides a Route Server (route multiplexer)

IP traffic is exchanged directly between
participants, i.e. the IXP is forwarding transparent

IP traffic

Router Server

With respect to a traditional IXP, SDN-enabled IXP (SDX)

Router Server

With respect to a traditional IXP, SDN-enabled IXP (SDX)
data-plane relies on SDN-capable devices

Router Server

With respect to a traditional IXP, SDN-enabled IXP (SDX)
control-plane relies on a SDN controller

SDN controller

also a Route Server

SDX participants express their policies
in a high-level language built on top of Pyretic (*)

(*) http://frenetic-lang.org/pyretic/

http://frenetic-lang.org/pyretic/

SDX policies are composed of
a pattern and some actions

match (Pattern), then (Actions)

Pattern selects packets based on any header fields,

Pattern

eth_type

vlan id

srcmac

match (dstmac , &%, ||), then (Actions)

protocol

dstip

tos

srcip

srcport

dstport

Pattern selects packets based on any header fields,
while actions forward or modify the selected packets

Actions

drop
match (Pattern), then (forward)

rewrite

Each participant writes her policies independently
and transmits them to the controller

Participant A’s policy:

match(dstip=ipA.1), fwd(Al)
match(dstip=ipA.2), fwd(A2)

Participant B’s policy: \
T
match(dstip=ipC), fwd(C) —

match(dstip=ipA), fwd(A) ~— SDN controller
match(dstip=ipB), fwd(B)

match(dstip=ipC), fwd(C)

Participant C’s policy

Given the participant policies, the controller compiles
them to SDN forwarding entries

Ensuring isolation

Resolving policies conflict

Ensuring scalability

Given the participant policies, the controller compiles
them to SDN forwarding entries

Each participant controls
one virtual switch

Ensuring isolation <
connected to participants

it can commuhnicate with

Resolving policies conflict

Ensuring scalability

Given the participant policies, the controller compiles
them to SDN forwarding entries

Ensuring isolation

Participant policies are
sequentially composed

Resolving policies conflict <
in an order that respects

business relationships

Ensuring scalability

Given the participant policies, the controller compiles
them to SDN forwarding entries

Ensuring isolation

Resolving policies conflict

only install the minimum
required in the data plane

Ensuring scalability <

leverage the existing BGP
control plane for the rest

The edge routers, sitting next to the fabric,
are tailored to match on numerous IP prefixes

not FIB-constrained FIB constrained

Edge router SDN switch

We consider routers FIB as the first stage
of a multi-stage FIB

IXP fabric

Table #1 —» Table #2

Edge router SDN switch

Routers FIB match on the destination prefix
and set a tag accordingly

set a TAG
based on IP

Table #1 ——» Table #2

Edge router SDN switch

The SDN FIB matches on the tag,
not on the IP prefixes

set a TAG

match TAG
based on IP

Table #1 ——» Table #2

Edge router SDN switch

How do we provision tag entries in a router,
and what are these tags?

set a TAG

match TAG
based on IP

Table #1 ——» Table #2

Edge router SDN switch

We use BGP as a provisioning interface
and the L2 address of the BGP NH as label

When a BGP router receives a route, it

runs the decision process
resolves the BGP NH to a L2 NH (if it is a best route)

installs a FIB entry directing the traffic to the L2 NH

We use BGP as a provisioning interface
and the L2 address of the BGP NH as label

When a BGP router receives a route, it

runs the decision process,
resolves the BGP NH to a L2 NH (if it is a best route),

installs a FIB entry directing the traffic to the L2 NH

We can tweak the BGP/L2 NH and use it as a tag

Let’s walk through the compilation
of a simple inbound TE policy

500k BGP routes

AS B’s SDX policy

match(dstip=0*) fwd(B1)
match(dstip=1*) fwd(B2)

A, B and C are all connected to the SDX

The policy is first divided
in match and forward actions

match(dstip=0*) fwd(B1)
match(dstip=1*) fwd(B2)

The policy is first divided
in match and forward actions

match(dstip=0*) fwd(B1)
match(dstip=1*) fwd(B2)

A virtual IP/MAC next-hop is associated to
each distinct forwarding actions

fwd(B1) —— (NH1, MAC1)
fwd(B2) —— (NH2, MAC2)

The SDX controller provisions two data plane rules

matching the destination MAC

Bl

B2

fwd(B1) —— (NH1, MAC1)
fwd(B2) —— (NH2, MAC2)

SDX controller

@

Forwarding rules

match(dst:MAC1), fwd(B1)
match(dst:MAC2), fwd(B2)

The SDX controller rewrite the BGP NH of B’s routes
according to the match part of the policy

match(dstip=0%*) (NHT, MACT)
match(dstip=1%*) (NH2, MAC2)
BGP routes sentto A & C
- rewritten
SDX controller eBGP routes prefix NH
pl NH1
B'I - -
p250k NHT
pP250k+1 NH?2
B2

p250k NH2

Traffic from A and C is splitted on B1 and B2
according to B’s policy, with only 2 data-plane rules

SDX controller

Bl

B2 IP300k

What else does SDX enable that was
hard or impossible to do before?

SDX enables a wide range of novel applications

security

forwarding optimization

peering

remote-control

Prevent/block policy violation

Prevent participants communication

Middlebox traffic steering
Traffic offloading
Inbound Traffic Engineering

Fast convergence

Application-specific peering

Upstream blocking of DoS attacks
Influence BGP path selection

Wide-area load balancing

SDX enables a wide range of novel applications

security

forwarding optimization

peering

remote-control

Prevent/block policy violation

Prevent participants communication

Middlebox traffic steering
Traffic offloading
Inbound Traffic Engineering

Fast convergence

Application-specific peering

Upstream blocking of DoS attacks
Influence BGP path selection

Wide-area load balancing

BGP is pretty slow to converge upon peering failure

Let’s consider a simple example with 2 networks,
A and B, with B being the provider of A

Router B2 is a backup router,
it may be used only upon B1’s failure

Both A1 and A2 prefer the routes received
from B1 and install them in their FIB

500,000 BGP routes

forwarding table

P500k BI

Upon B1’s failure, A1 and A2 must update
every single entry in their FIB (~500k entries)

forwarding table

P500k BI

Upon B1’s failure, A1 and A2 must update
every single entry in their FIB (~500k entries)

forwarding table l FIB updates
P500k BI

Upon B1’s failure, A1 and A2 must update
every single entry in their FIB (~500k entries)

forwarding table l FIB updates
P500k B2

On most routers, FIB updates are performed linearly,
entry-by-entry, leading to slow BGP convergence

convergence time 500k entries * 150 psecs

entry

average time
to update one entry

On most routers, FIB updates are performed linearly,
entry-by-entry, leading to slow BGP convergence

O(75) seconds

convergence time 500k entries * 150 psecs

entry

average time
to update one entry

With SDX, sub-second peering convergence
can be achieved with any router

When receiving multiple routes, the SDX controller
pre-computes a backup NH for each prefix

SDX controller

¥ IXP Switching Fabric

When receiving multiple routes, the SDX controller
pre-computes a backup NH for each prefix

SDX controller

500,000 BGP r
via Bl

prefix NH ,

P1 B backup

forwarding table

P500k BI

Upon a peer failure, the SDX controller
directly pushes next-hop rewrite rules

SDX controller

500,000 BGP r
via Bl

prefix NH ,

P1 B backup

forwarding table

P500k BI

matc

matc

n(srcmac:Al, ¢

n(srcmac:A2, ¢

stmac:Bl), rewrite(d

stmac:Bl), rewrite(d

stmac:B2), fwd(B2)

stmac:B2), fwd(B2)

All BGP traffic immediately moves from B1 to B2,
independently of the number of FIB updates

SDX controller

Pl Bl

forwarding table

P500k BI

SDX data-plane can enable sub-second,
prefix-independent BGP convergence

controller
communication time

convergence time # edge entries * 150 psecs + 30~50 ms

entry

average update time per entry

SDX data-plane can enable sub-second,
prefix-independent BGP convergence

convergence time # edge entries * 150 psecs + 30~50 ms

entry

= 0(30~50) ms

SDX enables a wide range of novel applications

security

forwarding optimization

peering

remote-control

Prevent/block policy violation

Prevent participants communication

Middlebox traffic steering
Traffic offloading
Inbound Traffic Engineering

Fast convergence

Application-specific peering

Upstream blocking of DoS attacks
Influence BGP path selection

Wide-area load balancing

DNS-based wide-area load balancing
has several limitations

High TTL values lead to slow recovery when a device fails

due to caching by local DNS servers and browsers

Low TTL values lead to higher delay for DNS resolution

due to cache misses

Load-balancing is not based on the client IP address

but on the DNS resolver IP address (e.g., 8.8.8.8)

SDX enable direct and quick control
of traffic redirection

Let’s consider a CDN C that provides
one service at two Data Centers (DC)

= =

bcr —

C assigns one |P prefixes per DC

C assigns one IP address identifying the service

192.0.10.1

192.0.10.0/24 is a service prefix

C announces the service prefix at the IXP

192.0.10.1

C directs the service traffic to the appropriate
DC based on the client’s IP address

match(dstip=192.0.10.1) then
(match(srcip=0.0.0.0/1) then
mod(dstip=192.0.1.161)) and // forward to DC1
(match(srcip=128.0.0.0/1) then
mod(dstip=192.0.2.139)) // forward to DC2

SDX based wide-area load-balancing works
for any number of services and data centers

192.0.10.1 192.0.10.2 192.0.10.3

services
= {53

4

SDX enables direct and quick control
of traffic redirection

SDX-based load-balancing is

fast no DNS caching problem
flexible use of any load-balancing algorithm

efficient based on the actual client IP address

On integrating Software-Defined Networking
within existing routing systems

SDN-controlled routers

don’t trash, recycle

SDN-controlled IGP

fine-grained traffic engineering

SDN-controlled BGP

inter domain bonanza

SDN-controlled routing enables to realize parts
of the SDN promises today, on an existing network

Facilitate a complete transition to SDN

provide one interface to rule them all

Simplify the controller implementation

most of the work is still done by the routers

Maintain operators’ mental model

same good old protocols running, easier troubleshooting

On integrating Software-Defined Networking
within existing routing systems

Laurent Vanbever

Google, Mountain View

www.vanbever.eu

vanbever@cs.princeton.edu

http://www.vanbever.eu
mailto:vanbever@cs.princeton.edu

