Towards Validated Network Configurations
with NCGuard

Laurent VANBEVER, Gréegory PARDOEN, Olivier BONAVENTURE

INL: IP Networking Lab (http://inl.info.ucl.ac.be,laurent.vanbever@uclouvain.be)
Université catholique de Louvain (UCL), Belgium

Internet Network Management Workshop
October 19,2008

http://inl.info.ucl.ac.be
http://inl.info.ucl.ac.be
mailto:laurent.vanbever@uclouvain.be
mailto:laurent.vanbever@uclouvain.be

Agenda

® |ntroduction
® State-of-the art in network configuration

® NCGuard: Towards new configuration paradigm
® High-level representation
® Validation

® Generation
® Conclusion

® Demo session (1:30pm - 2:30pm)

Introduction

Some networking facts

® Configuring networks is complex, costly, and error-
prone

® Networks can be composed of hundreds to thousands of
devices

¢ Manual configuration, equipbment-by-equipbment
® Trial-and-error approach

e Diversity of vendor-specific languages (IOS, JunOS, etc.)
® Syntax, semantic, and supported features sets are different
® Low-level configuration languages

® | ot of code duplication

Consequences

® Network misconfigurations are frequent

® “ Human factors, is the biggest contributor — reslponsible for
50 to 80 percent of network device outages ”

® |n 2002, 0.2% to 1% of the BGP table size suffer from
misconfiguration 2

® Misconfigurations have led and still lead to large scale
problems (e.g.,YouTube in 2008)

® Management costs keep growing due to the increasing
complexity of network architectures

' Juniper Networks,What'’s Behind Network Downtime?, 2008
2 R. Mahajan, D.Wetherall, and T. Anderson, “Understanding BGP Misconfiguration,” in SIGCOMM ’02, 2002, pp. 3—16.

Current Approaches: Static Analysis

® Use pattern matching on configurations to detect
misconfigurations '

® Compare configurations to given specifications *

® Pro & Con:

* \Very effective to detect some critical problems
* Need a a priori specifications of what a valid network is
e Difficulties encountered when analyzing heterogenous networks

e Solution: use of an intermediate representation

' A. Feldmann and J. Rexford. IP Network Configuration for Intradomain Traffic Engineering. IEEE Network Magazine, 2001.
2 N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with Static Analysis. In Proceedings of NSDI, 2005.

Current Approaches: Data mining

® Perform statistical analysis directly on configurations '

® Infer network-specific policies, then perform deviation
analysis 2

® Pro & Con:
e Completely independent of a priori validity specifications
® Too verbose, people are flooded with non-error messages.

o Difficulties encountered when analyzing heterogenous networks

e Solution: use of an intermediate representation

' K. EI-Arini and K. Killourhy. Bayesian Detection of Router Configuration Anomalies. In SIGCOMM Workshop on Mining Network Data, 2005.

2F Le,S. Lee, T.Wong, H. S. Kim, and D. Newcomb. Minerals: Using Data Mining to Detect Router Misconfigurations. In MineNet '06:
Proceedings of the 2006 SIGCOMM Workshop on Mining Network Data, 2006. 7

Current Approaches: Design

SPECIFICATIONS VALIDATOR
ERRORS &
WARNINGS

INTERMEDIATE
REPRESENTATION
TRANSLATOR

Legend:

>

BOTTOM-UP APPROAC

NCGuard: Towards new
configuration paradigm’

" http://inl.info.ucl.ac.be/softwares/ncguard-network-configuration-safeguard

http://inl.info.ucl.ac.be/softwares/ncguard-network-configuration-safeguard
http://inl.info.ucl.ac.be/softwares/ncguard-network-configuration-safeguard

Starting point

® Network configuration contrasts with numerous progress in
software engineering

® Requirements, specifications, verification, validation, new development
schemes, etc.

® |n comparison, network configuration is like writing a distributed
program in assembly language !

® Current approaches do not solve the problem

® Do not relax the burden associated to the configuration phase

® Why not apply software engineering techniques to network
configurations !

'S. Lee, T.Wong, and H. Kim,“To automate or not to automate : On the complexity of network configuration,” in IEEE ICC 2008,
Beijing, China, May 2008.

NCGuard Design

NETWORK
ERRORS &
VALIDATOR
JUNIPER
TEMPLATE
GENERATOR

Legend:

<DVO‘dddV NAOQ-dO |

Main concepts

|. High=level representation (i.e., abstraction) of a network
configuration

® Suppress redundancy

® Vendor-independent
2. Rule-based validation engine

® A rule represents a condition that must be met by the
representation

® Flexible way of adding rules
3. Generation engine

® Produce the configuration of each device in its own configuration
language

Validation engine

® After a survey of real network configurations, we found that
many rules follow regular patterns

® |n NCGuard, we implemented the structure of several
patterns, that can be easily specialized:

® Presence (or non-presence)
® Uniqueness
® Symmetry

® |f a rule cannot be expressed as one of them:

® Custom (e.g., connexity test, network redundancy test, etc.)

™ ™ m m oo === o=

Rules representation

Scope: All routers

(Routers)

————————————————————————

Interface Interface

so-0/0/1 so-0/0/1
Interface Interface

% loopback loopback

________ S

descendants(R1) : descendants(R2) :
all RI’s interfaces all R2’s interfaces

C) : Configuration node

- am s Es Ee e e B B B B B B

Rules are expressed formally by using
the notions of scope and its
descendants

® A configuration node is an element
of the high-level representation

® Composed of fields

® A scope is a set of configuration
nodes

® descendants(x) is a set of selected
descendants of the scope’s element x

Presence rule

® Check if certain configuration nodes are in the representation

Example: each router must have a loopback interface

Interfaces of RI<\

- e Em e Em e B o o Em my

(Routers)

Scope: All routers

Interface)1 +f Interface : Interfaces of R2
Ed:so-O/O/(J: :Ed:so-O/OIOJ - 4 '
Interface L Interface ;
id: loopback ' id: loopback ! . Seeked nod
_________________ ’ . OeeKed node

Presence rule

Check if there is at least one configuration node respecting a
given condition in each descendants set.

Vx € SCOPE Jy € descendants(z) : Chresence(, Y)
Example : each router must have a loopback interface

Vx € ROUTERS dy € interfaces(x) : y.id = loopback

<rule 1d="LOOPBACK_INTERFACE_ON_EACH_NODE" type="presence">
<presence>
<scope>ALL_NODES</scope>

<descendants>1interfaces/interface</descendants>
<condition>@1id="loopback'</condition>
</presence>
</rule>

Uniqueness rule

Check the uniqueness of a field value in a set of
configuration nodes

Example : uniqueness of routers interfaces identifiers

(ROUters) Scope :All routers

Interface Interface
id: loopback id: s0-0/0/0

Ids of RI’s interfaces are unique. lds of R2’s interfaces are not unique
The rule will failed.

Uniqueness rule

Check if there is no two configuration nodes with identical
value of field

Vo € SCOPEVy € d(x) : =(Jzxy € d(z) : y.field = 2. field)

Example : uniqueness of routers interfaces identifiers

Vo € ROUTERS Vy € interfaces(z) : —(dzx, € interfaces(z) : y.id = z.id)

<rule 1d="UNIQUENESS_INTERFACE_ID" type="uniqueness">
<uniqueness>
<scope>ALL_NODES</scope>

<descendants>interfaces/interface</descendants>
<field>@id</field>

</uniqueness>

</rule>

Symmetry rule

Check the equality of fields of configuration nodes

Such rules can be checked implicitly by the high-level
representation

Example: MTU must be equal on both ends of a link
® Automatically checked by modeling it once at the link level
® [nstead of twice at the interfaces level

® Hypothesis: duplication phase is correct

Custom rule

® Used to check advanced conditions

® Expressed in a query or programming language

Example: All OSPFs areas must be connected to the backbone

<rule 1d="ALL_AREAS_CONNECTED_TO_BACKBONE_AREA" type="custom">
<custom>
<xquery>
for $area in /domain/ospf/areas/area[@id!="0.0.0.0"]
let $nodes := $area/nodes/node
where count(/domain/ospf/areas/area) > 1

and not(some $y in $nodes satisfies /domain/ospf/areas/
area[@1d="0.0.0.0"]/nodes/node[@id=%y/@id])
return
<result><area id="{$area/@id}"/></result>
</xquery>
</custom>
</rule>

20

Generation

® High level representation is not designed to be translated into
low level language

® Intermediate representations are needed

® Templates translate those intermediates representations
into configuration files

® Support of any configuration or modeling language (e.g., Cisco
|OS, Juniper JunOS§, etc.)

21

22

Generation

<node 1d="SALT">
<interfaces>
<interface id="100">

<unit number="0">
<1p type="1ipv4" mask="32">198.32.8.200</1p>

<ip type="1pv6" mask="128">2001:468:16::1</1p>
</unit>
</interface>
</1interfaces>
</node>

interfaces {
1lo@ {
unit

JUNIPER
TEMPLATE

GENERATOR

0 {
family inet {
address 198.32.8.200/32;
ks
family inet6 {
address 2001:468:16::1/128;

Conclusion

Conclusion

® NCGuard is a first step towards an extensible, and easy
way of designing and configuring correct networks.

e Easy to:

® Add new protocols, equipments, parameters, etc.

® Add rules to check specific needs or new features

® Add new templates to generate appropriate configlets

® Further works:

® Extends the prototype to a broader range of case

® Allow NCGuard to interact directly with the routers

24

Any Questions !

