
Scalable Programmable Inbound Traffic Engineering

Peng Sun
Princeton University

pengsun@cs.princeton.edu

Laurent Vanbever
ETH Zürich

lvanbever@ethz.ch

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

ABSTRACT
With the rise of video streaming and cloud services, enterprise
and access networks receive much more traffic than they send, and
must rely on the Internet to offer good end-to-end performance.
These edge networks often connect to multiple ISPs for better per-
formance and reliability, but have only limited ways to influence
which of their ISPs carries the traffic for each service. In this pa-
per, we present Sprite, a software-defined solution for flexible in-
bound traffic engineering (TE). Sprite offers direct, fine-grained
control over inbound traffic, by announcing different public IP pre-
fixes to each ISP, and performing source network address trans-
lation (SNAT) on outbound request traffic. Our design achieves
scalability in both the data plane (by performing SNAT on edge
switches close to the clients) and the control plane (by having lo-
cal agents install the SNAT rules). The controller translates high-
level TE objectives, based on client and server names, as well as
performance metrics, to a dynamic network policy based on real-
time traffic and performance measurements. We evaluate Sprite
with live data from “in the wild” experiments on an EC2-based
testbed, and demonstrate how Sprite dynamically adapts the net-
work policy to achieve high-level TE objectives, such as balancing
YouTube traffic among ISPs to improve video quality.

Categories and Subject Descriptors:
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network management;
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed applications
Keywords:
Traffic engineering; software-defined networking; scalability

1. Introduction
Many edge networks—like enterprises, university campuses, and

broadband access networks—connect to multiple Internet Service
Providers (ISPs) for higher reliability, better performance, and lower
cost. Many research projects [1, 2, 3] and commercial products [4,
5, 6, 7, 8, 9] have shown how multihomed networks can divide their
outbound traffic over multiple ISPs to optimize peformance, load,
and cost. However, relatively few works have explored how to per-
form inbound traffic engineering effectively.

Yet, inbound traffic engineering has never been more important.
Modern applications like video streaming and cloud services have
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SOSR 2015, June 17–18, 2015, Santa Clara, California, USA.
c© 2015 ACM. ISBN 978-1-4503-3451-8/15/06...$15.00

DOI: http://dx.doi.org/10.1145/2774993.2775063.

highly asymmetric traffic demands; for example, our measurements
show that the Princeton University campus receives an average of
eight times more traffic than it sends. Many applications are per-
formance sensitive; video streaming needs high throughput and
low jitter, and many cloud services need low latency to compete
with the alternative of running services locally. In addition, end-
to-end performance is vulnerable to peering disputes [10], where
some ISPs do not devote enough bandwidth for high-quality video
streaming, leading video services to decrease the video quality to
reduce the bandwidth requirements. Switching the traffic to a dif-
ferent incoming ISP along a better end-to-end path could increase
the video quality.

Unfortunately, inbound traffic engineering (TE) is quite diffi-
cult. Since Internet routing is destination-based, the sending Au-
tonomous System (AS) decides where to forward traffic, based on
the routes announced by its neighbors. The receiving network has,
at best, clumsy and indirect control by manipulating its Border
Gateway Protocol (BGP) announcements, through AS-PATH pre-
pending (adding fake hops to make the route through one ISP look
longer than another) and selective prefix announcements (to force
all traffic to one group of users to arrive via one ISP rather than
another). Both techniques are coarse-grained and do not allow an
edge network to (say) receive all Netflix traffic via one ISP, and all
Gmail traffic through another.

Edge networks need an TE solution that offers fine-grained, di-
rect control of inbound traffic, without requiring support from the
sender or the rest of the Internet. In this paper, we introduce Sprite
(Scalable PRogrammable Inbound Traffic Engineering), a software-
defined TE solution. Sprite controls inbound traffic by dividing the
edge network’s public IP address space across the ISPs, and using
source network address translation (SNAT) to map each outbound
connection to a specific inbound ISP for the return traffic [3], as
discussed in more detail in the next section. Given the nature of
Internet routing, an edge network cannot fully control the entire
end-to-end path—only which entry point receives the traffic. Still,
this gives an edge network enough control to balance load and op-
timize performance by selecting among a small set of end-to-end
paths for each connection.

The key contribution of Sprite is a scalable solution for real-
izing high-level TE objectives, using software-defined networking
(SDN). Sprite achieves scalability in the data plane (by distribut-
ing the SNAT functionality over many edge switches, close to the
end hosts) and the control plane (by having local agents install the
SNAT rules and collecting traffic statistics on behalf of the central
controller). The network administrator specifies a high-level traffic-
engineering objective based on names (rather than network identi-
fiers) and performance metrics (rather than routing decisions). The
controller translates the high-level objective into network policy,
and dynamically adjusts the network policy based on traffic and
performance measurements. We present the design and implemen-
tation of our Sprite architecture, and evaluate our system “in the
wild” using an EC2-based testbed and the PEERING testbed [11].

ISP 1

ISP 2

Internet

YouTube

Salesforce

Edge Network

1.1.0.0/24	

1.1.1.0/24	

Agent	

Agent	
 SNAT:1.1.0.3	

SNAT:1.1.1.3	

Controller	

10.1.1.2	

Figure 1: Scalable distributed SNAT in Sprite

2. Inbound TE Using Source NAT
An edge network can have direct control over inbound traffic by

combining two mechanisms:

Split the IP address block across ISPs: To control the flow of
inbound traffic, the edge network’s public address space is divided
into separate prefixes, and Sprite assigns each prefix to one up-
stream ISP, similar to the common practice of selective prefix an-
nouncements. For example, an edge network with the 1.1.0.0/23
address and two ISPs could announce 1.1.0.0/24 via ISP 1 and
1.1.1.0/24 via ISP 2; for fault tolerance in the case of ISP discon-
nection, the edge network also announces the supernet 1.1.0.0/23
via both ISPs.

Perform SNAT on outbound traffic: To associate a new con-
nection with a particular inbound ISP, the edge network maps the
source IP address of outgoing request traffic to an address in the ap-
propriate prefix. For example, the edge network numbers its client
machines using private addresses (e.g., in the 10.0.0.0/8 address
block), and maps outgoing connections to a source IP address in ei-
ther 1.1.0.0/24 (if the destination corresponds to a YouTube server)
or 1.1.1.0/24 (if the destination corresponds to a Salesforce server).

While the outbound traffic might leave the edge network through
either upstream ISP, these two mechanisms ensure that the response
traffic arrives via the selected ISP. If the edge network runs any pub-
lic services, those hosts should have public IP addresses routable
via either ISP.

Using SNAT for inbound traffic engineering is not a new idea.
Previous work [3, Sec IV.C] briefly discusses how to realize NAT-
based inbound route control at a Web proxy using iptables.
The main challenges we address in this paper are (i) automati-
cally translating fine-grained TE objectives to low-level rules and
(ii) distributing both the control-plane and data-plane functionality
for better scalability.

3. Scalable Sprite Architecture
Sprite achieves scalability by distributing the data-plane rules

(across switches near the end hosts) and control-plane operations
(across local agents on or near the switches), as shown in Figure 1.
The network administrator conveys a high-level traffic-engineering
objective to the controller, then the controller generates a network
policy to distribute to the local agents, and finally the local agents
install SNAT rules in the switch data plane, as summarized in Fig-
ure 2.

3.1 Data Plane: Edge Switches Near Hosts

SNAT gives edge networks direct, fine-grained control over in-
bound traffic. Yet performing SNAT at a single proxy or border

High-­‐level	

Objec.ve	

Network	

Policy	

Flow	
 Rule	

Abstraction

<CSDept,	
 YouTube>	

èBestThroughput	

<10.1.1.0/24:*,	
 173.194.0.0/16:80>	

è1.1.0.0/24	
 (ISP1)	

<10.1.1.2:60257,173.194.61.236:80>	

SNAT	
 to	
 1.1.0.3	

Control plane

Global sync

Example

Data plane

Local only

Figure 2: Three levels of abstraction in Sprite

router poses a scalability problem. SNAT requires dynamically es-
tablishing a data-plane rule for each connection. The data-plane
state would be large as it is in proportion to the large number of
active connections, and control-plane operations are required on
every connection set-up. The presence of multiple border routers
introduces further complexity, since traffic for the same connection
may enter and leave via different locations.

Instead, Sprite performs SNAT on a distributed collection of
switches, near the end hosts. These switches can also collect pas-
sive traffic measurements (e.g., byte and packet counts per rule) that
can help drive traffic-engineering decisions. These edge switches
could be virtual switches running on the end hosts, access switches
connected directly to a group of end hosts, or a gateway switch
connecting a department to the rest of the enterprise network. Com-
pared to the border routers, each switch handles much fewer active
connections and a much lower arrival rate of new connections, en-
abling the use of cheap commodity switches (with small rule tables)
or software switches.

The edge switches also need to receive the return traffic destined
to its associated end hosts. Each edge switch maps outbound traf-
fic from internal private addresses to a small set of public IP ad-
dresses assigned by the controller to the local agent. As such, the
return traffic is easily routed to the right edge switch based on the
destination IP prefix. If the edge network runs a legacy routing
protocol (e.g., OSPF or IS-IS), the controller configures the injec-
tion of these prefixes into the routing protocol. If the edge network
consists of SDN switches, the controller can install coarse-grained
rules in the border router and interior switches to forward traffic to
the right edge switch. By carefully assigning contiguous prefixes to
nearby edge switches, the controller could further aggregate these
prefixes in the rest of the edge network.

3.2 Control Plane: Local Agents Near Switches

Rather than involving the controller in installing each SNAT rule,
a local agent on (or near) each switch performs this simple task.
Based on a high-level traffic-engineering objective, the controller
computes a network policy that maps network identifiers (e.g., IP
addresses and port ranges) to the appropriate inbound ISP. Then,
the controller subdivides the unique set of source IP addresses and
port ranges across the local agents, so each local agent can generate
flow rules on its own as new connections arrive. As a result, Sprite
does not send any data packets to the controller. The local agent
can also collect and aggregate measurement data from the switch’s
rule counter and via active probing, and share the results with the
controller to inform future decisions.

The network policy generated by the Sprite controller only spec-
ifies source and destination IP prefixes, TCP/UDP port ranges, and

which inbound ISP to use. Each local agent uses the network policy
to automatically create SNAT rules for each new flow. Each edge
switch has a default rule that sends all outbound traffic (i.e., pack-
ets with an internal source IP address) to the associated local agent.
Upon receiving the packet, the local agent consults the current net-
work policy to identify the suitable set of public addresses and port
numbers, selects a single unused address/port pair, and installs the
NAT rules for both directions of the traffic.

The controller needs to assign each local agent a sufficiently
large pool of addresses and port numbers, without wasting the lim-
ited public address space. The controller can use measurement data
collected from the local agent to track statistics on the number of
simultaneously active connections. When running low on avail-
able address/port pairs, the agent contacts the controller to request
additional identifiers; similarly, the controller can reclaim unused
ranges of addresses from one local agent and assign them to another
as needed. With reasonable “headroom” to over-allocate address/-
port pairs to each agent, the controller can limit the churn in the
assignments.

4. Dynamic Policy Adaptation
Sprite enables network administrators to express a wide range

of TE objectives using high-level names of remote services and
groups of users, as well as performance metrics. The controller
automatically translates the TE objective into a low-level network
policy, and adapts in real time to traffic and performance measure-
ments.

4.1 High-level TE Objectives

Rather than specifying TE objectives on IP addresses and port
numbers, Sprite allows administrators to use high-level names to
identify services (e.g., YouTube) and groups of users (e.g., CS-
Dept). The administrators can let Sprite dynamically map the con-
nections of the users/services onto the ISPs by providing an eval-
uation function. The function takes many metrics (e.g., the ISP
capacity, the connections’ performance, etc) as inputs, and returns
a score for how the ISP behaves. For example,

USER(BioDept) AND SER(SalesForce)→
BEST(LatencyCalculationFunction)

specifies that traffic from SalesForce to the Biology department
should use the ISP that offers the lowest latency. Alternatively,
the administrator can associate connections with particular named
clients and services with a specific set of ISPs (with weights that
specify the portion of inbound traffic by ISP). For example,

SER(YouTube)→ [<ISP1,1.0>,<ISP2,4.0>,<ISP3,9.0>]

specified that YouTube traffic should enter via ISPs 1, 2, and 3 in
a 1:4:9 ratio by traffic volume. We summarize the syntax of the
language in Table 1.

4.2 Computing the Network Policy

Sprite collects performance metrics of the network policy and
uses inputs from the edge network itself to automatically adapt the
set of network policies for a high-level objective.

Mapping names to identifiers: Sprite maintains two data sources
to map the high-level name of a service of group of users to the cor-
responding IP addresses. For users, Sprite combines the data from

OBJECTIVE := PREDICATE→ ISP_CHOICE
PREDICATE := USER(User identifier)

| SER(Remote service name)
| PREDICATE AND/OR

PREDICATE
ISP_CHOICE := DYNAMIC(eval_func)

| BALANCE
BALANCE := [<ISP identifier, weight>, . . .]
eval_func := User-defined function over ISP capacity,

flow statistics, and other metrics

Table 1: Syntax of High-level Objective

the device registry database of the edge network (linking device
MAC addresses to users), and the DHCP records. The <user group,
list of users> records are provided by the network administrators
manually. For external services, Sprite tracks the set of IP ad-
dresses hosting them. Like NetAssay [12], Sprite combines three
sources of data to automatically map a service’s name to the pre-
fixes it uses: 1) the DNS records obtained from the edge network;
2) the BGP announcements at the border routers; and 3) traces com-
ing from a few probe machines that emulate user traffic to popular
services. Although Sprite cannot guarantee 100% accuracy, it can
discover the prefixes for a majority of the service’s inbound volume
in practice1.

Satisfying the TE objective: The Sprite controller translates
the high-level objective into a set of clauses for the network policy,
expressed as <user prefix: port range, service prefix: port range>
→ inbound ISP. For each clause, the Sprite agent collects the per-
formance metrics of each matching connection from the counters
of SNAT rules in data plane (e.g., throughput), to richer transport-
layer statistics (e.g., round-trip time) if available [15]. The con-
troller collects these metrics periodically, and calculates the aggre-
gate performance. Then the data are fed to the evaluation function
provided by the administrators to score how each ISP behaves. If
the scores of the ISPs are different enough, the controller adapts the
network policy by swapping some users from one inbound ISP to
another. Sprite always keeps at least one active user on an ISP so
that it can always know the actual performance of inbound traffic
via an ISP through passive measurement of real traffic.

We now illustrate the process through an example. Suppose
the objective is to achieve the maximum average throughput for
YouTube clients. Users in the edge network are in the 10.1.0.0/22
address block. The Sprite controller initially splits the users into
two groups (10.1.0.0/23, 10.1.2.0/23), and allocates their traffic
with YouTube to use one of the two ISPs. Figure 3 shows the net-
work policy generated in the iteration T. Carrying out the network
policy, Sprite measures the throughput of each SNATed connec-
tion with YouTube, and calculates the average per-user throughput.
The average inbound throughput via ISP2 is 1Mbps due to high
congestion, while that of ISP1 is 2Mbps. Thus the controller de-
cides to adapt the network policy to move some users from ISP2 to
ISP1. In the iteration T+1, the users in 10.1.2.0/23 are further split
into two smaller groups: 10.1.2.0/24 and 10.1.3.0/24. While users
in 10.1.2.0/24 stay with ISP2, users in 10.1.3.0/24 have their new
connections use ISP1 for their traffic from YouTube. The new net-

1One reason is that the major contributors of inbound traffic (e.g.,
Netflix and YouTube) are increasingly using their own content de-
livery networks (CDNs) [13, 14], rather than commercial CDNs.
These services’ own CDNs usually sit in their own ASes.

Objec&ve:	

Best	
 avg.	
 per-­‐user	
 throughput	
 for	
 YouTube	

ISP1 ISP2

Avg. throughput: 2Mbps Avg. throughput: 1Mbps

T
<10.1.0.0/23:*,	
 173.194.0.0/16:80>	

è1.1.0.0/24	
 (ISP1)	

<10.1.2.0/23:*,	
 173.194.0.0/16:80>	

è1.1.1.0/24	
 (ISP2)	

T+1

Expect avg. throughput: 1.5Mbps Expect avg. throughput: 1.5Mbps

<10.1.0.0/23:*,	
 173.194.0.0/16:80>	

è1.1.0.0/24	
 (ISP1)	

<10.1.2.0/24:*,	
 173.194.0.0/16:80>	

è1.1.1.0/24	
 (ISP2)	

<10.1.3.0/24:*,	
 173.194.0.0/16:80>	

è1.1.0.0/24	
 (ISP1)	

Figure 3: Example of Network Policy Adaptation
for Dynamic Performance-Driven Balancing

work policy should alleviate congestion on ISP2 and might increase
congestion on ISP1, leading to further adjustments in the future.

5. Implementation
In this section, we describe the design and implementation of the

Sprite system and how we made it efficient and robust.

5.1 Design for Fault Tolerance

Sprite system centers on a distributed datastore (see Figure 42)
which keeps all the stateful information related to the high-level
objective, the network policy, the performance metrics of SNATed
connections, and the status of SNAT IP allocation. The controller
and all the agents run independently in a stateless fashion. They
never directly communicate with each other, and just read or write
data through the distributed datastore.

Making the datastore the single stateful place in Sprite greatly
improves the system’s robustness. Indeed, device failures are com-
mon since Sprite employs a distributed set of agents and commod-
ity switches. In this architecture, any controller or agent failure
won’t affect the operations of other instances or the stability of the
whole system. Recovery from failures also becomes a simple task.
We can start a fresh instance of controller or agent to re-fetch states
from the datastore to resume the dropped operations.

The architecture also makes the Sprite system very flexible for
different deployment environments. For instance, some enterprises
may have standard imaging for all machines, and wish to bundle the
Sprite agent in the image to run directly on the end host, while oth-
ers can only place the agent side by side with the gateway routers.
The adopters of Sprite can plug in/out or re-implement their own
controller or agent to accommodate the deployment constraints, as
long as maintaining the read/write interface with the datastore.

The implementation of the distributed datastore depends on our
data model. The model of network policy involves the mapping
of the four-tuple prefix/port wildcard match and the inbound ISP,
and the SNAT IP allocation is the mapping among IP, ISP, allo-
cation state, and agent. Using multiple items as the keys, the row-
oriented, multi-column-index data structure of Cassandra is the best
fit. Thus, we run Cassandra on end hosts as the datastore of Sprite.

5.2 How Components Communicate

2Not shown in Figure 4, we use the Floodlight controller as our
SDN control module [16], and it only communicates with the
Sprite controller for insertion and deletion of routing rules.

Backend Distributed Datastore

High-­‐level	

Objec.ve	

Network	

Policy	

Perf.	

Metrics	

SNAT	
 IP	

Alloca.on	

Controller	

Agent	

Pub/Sub	

Channel	

Request Queue

Agent	
 Agent	

Read/Sub

Write/Pub

Figure 4: System Architecture of Sprite Implementation

The controller and agents of Sprite interact via the datastore in a
pull-based fashion. However, the pull-based approach slows Sprite
in two places. Firstly, when the controller adapts the network poli-
cies, a pull-based agent may take up to its run period to pick up the
new set of network policies. This significantly slows down the con-
vergence speed of carrying out the new policy throughout the edge
network, thus slowing the convergence of the policy adaptation. A
second issue with the pull-based approach arises in the allocation
process of SNAT IPs. When agents request the allocation of new
source IPs and port ranges, new connections of users may be halted
at the agent. A long wait time would trigger the connection to drop,
thus affecting the user machine’s performance.

We need to add a push-based communication method to bal-
ance the robustness and performance of Sprite. Thus, we add
two communication points in the datastore for push-based signal-
ing between controller and agents: a publish/subscribe channel and
a message queue, as shown in Figure 4. When the controller writes
new network policies or new SNAT IP allocations into the data-
store, the controller publishes notification via the channel. As all
agents subscribe to the channel upon startup, the notification trig-
gers them to refresh the data from the datastore, thus catching up
with the new policy or allocation state quickly. The message queue
appends the agents’ allocation requests to its tail, and the controller
only removes the head once it successfully handles the request and
updates the datastore. In this way, the message queue guarantees
that each request is handled at least once. Thus users’ connections
are less likely to get stuck at the agents due to lack of source IPs.

5.3 Routing Control for Returning Packets

When we design to scale up the control plane of Sprite, we
decide not to synchronize the SNAT states of active connections.
These states are kept only locally at each agent/switch. As a result,
the returning packets destined for the SNATed IP must arrive at the
agent which handles the translation in the first place, in order to
reverse the translation correctly.

Assuming an OpenFlow-enabled network in our implementa-
tion, Sprite installs routing rules to direct the returning packets
to the right agents, i.e., once a source IP/port range is allocated to
an agent, the controller installs OpenFlow rules to match the source
IP/port range along the switches from the border router to the agent.

Rather than simply installing one rule per allocated source IP in
switches, we try to consolidate the routing rules into matching a
bigger prefix block. Our current algorithm works in this way: we
construct the shorted-path tree rooted at the border router with all
agents as the leaves. When allocating a source IP to an agent, we
pick the one that is bit-wise closest to the IPs allocated to the agents
having the longest shared paths.

Instance as
Border Router

Instance as
End Host

Agent	
 User	

App.	

Mux	
 A	

ISP	
 A	
 PEERING Site
GaTech

Mux	
 B	

ISP	
 B	
 PEERING Site
Clemson

Agent	
 User	

App.	

… Software
Switch

Tunnel with
BGP session

Regular
Tunnel

Instance	
 as	

Controller	

AWS VPC

Figure 5: Multihomed Testbed Setup

6. Evaluation
We evaluate Sprite with a pilot deployment on an EC2-based

testbed. Experiments in this section will demonstrate how Sprite
achieves multiple TE objectives.

6.1 Multi-ISP Deployment Setup

We build a testbed in AWS Virtual Private Cloud (VPC) to em-
ulate an enterprise network with multiple upstream ISPs, with the
help of the PEERING testbed [11, 17]. PEERING is a multi-univer-
sity collaboration platform which allows us to use each participat-
ing university as an ISP. Our testbed connects with two PEERING
sites to emulate a two-ISP enterprise network, and both sites offer
1Gbps capacity.

Figure 5 shows the testbed setup. In the AWS VPC, we launch
one machine (i.e., an AWS EC2 instance) to function as the border
router. The border-router instance runs Quagga software router to
establish BGP sessions with the PEERING sites in Georgia Tech
and Clemson University. For each PEERING site, we have one /24
globally routable block to use.

Behind the border-router instance, we launch many EC2 instances
to function as the “user” machines. These user-machine instances
connect with the border-router instance via regular VPN tunnels to
create a star topology. On each user-machine instance, we run the
Sprite agent and OpenVSwitch. The Sprite agents uses iptables
and OpenVSwitch to monitor and SNAT the connections. We will
launch applications (e.g., YouTube) from the user-machine instances
to emulate the traffic.

6.2 Inbound-ISP Performance Variance

ISPs perform differently when delivering the same service to the
edge networks, e.g., YouTube and Netflix. The performance dif-
ference among ISPs can be caused by various reasons [10]. An
example is the recent dispute between Netflix/Cogent and Verizon.
The video quality of Netflix is bad when delivered by Verizon, due
to the limited capacity of the peering links between Verizon and
Netflix. In contrast, Cogent does not have the quality issue as its
peering links have higher capacity,

Using Sprite, we can show that different ISPs provide differ-
ent quality towards the same service by specifying an objective of
equally splitting the number of users and assigning them to use one
of the two ISPs. On all user machines, we launch YouTube for a
2-hour-long movie, and we explicitly set the users to stream the
movie from the same YouTube access point. In the process, we

ISP Clemson ISP Gatech

P
e

rc
e

n
ta

g
e

 o
f

Q
u

a
lit

y
 M

e
a

s
u

re
m

e
n

t
P

o
in

ts

0

20

40

60

80

100
240p 360p 480p 720p 1080p

Figure 6: Video Quality Difference via Two ISPs

Time in Hours
0 2 4 6 8 10 12 14 16 18 20

A
v
g
 P

e
r-

U
s
e

r
T

h
ro

u
g
h
p
u

t
in

 K
b
p
s

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500
Via ISP Gatech
Via ISP Clemson

Figure 7: Time Series of Avg. Per-User Throughput of
YouTube

measure the video quality of the video every 1 minute on every
machine. Figure 6 shows the histogram of all these quality mea-
surement points to examine the characteristics of the two ISPs for
streaming YouTube. As Figure 6 shows, the GaTech PEERING site
consistently delivers video of higher quality than the Clemson site.

6.3 Effects of Dynamic Balancing

Sprite can dynamically move traffic among ISPs to achieve the
TE objective specified by the administrators. We provide an objec-
tive to achieve best average per-user throughput for YouTube traf-
fic, and evaluate how Sprite adapts the network policies for such
an objective. The objective is expressed as:

SER(YouTube)→ BEST(AvgIndividualThroughput)

The experiment runs on the EC2-based testbed. We launch You-
Tube on 10 user machines. We want to examine how the traffic of
users moves from one ISP to another over the time, and whether
Sprite can keep the average per-user throughput roughly the same
(within 5% margin) between the two ISPs. To evaluate how Sprite
reacts, we manually limit the capacity of the tunnel with the GaT-
ech PEERING site to emulate high congestion on the link. Figure 7
shows the time series of the average per-user throughput of access-
ing YouTube on these two ISPs. The average throughput of two
ISPs are always kept in line.

7. Related Work
Many works have considered aspects of the problem we address,

without providing a complete solution for direct, fine-grained, in-
crementally-deployable inbound TE.

BGP-based approaches Studying the impact of tuning BGP con-
figuration to an AS’s incoming traffic has a long and rich history
spanning over a decade [18, 19, 20, 21, 22, 23, 24, 25], including
numerous proprietary solutions [4, 26, 27]. All these solutions suf-
fer from at least three problems. First, they are non-deterministic.
They can only indirectly influence remote decisions but cannot con-
trol them, forcing operators to rely on trial-and-error. Second, they
are too coarse-grained as they only work at the level of a destina-
tion IP prefix. Third, they often increase the amount of Internet-
wide ressources (routing table size, convergence, churn) required
to route traffic, for the benefit of a single AS. In contrast, Sprite
provides direct and fine-grained control (at the level of each con-
nection) without using more Internet resources.

Clean-slate approaches Given the inherent problems with BGP,
many works have looked at re-architecting the Internet to enable
better control over the forwarding paths. Those works can be clas-
sified as network-based [28, 29, 30], which modify the way the
routers select paths, and host-based approaches which do the op-
posite [31, 32, 33, 34]. While these solutions can offer a principled
solution to the problem of inbound traffic engineering, they all suf-
fer from incremental deployment challenges. In contrast, any in-
dividual AS can deploy Sprite on its own, right now, and reap the
benefits of fine-grained inbound traffic engineering.

8. Conclusion
Inbound traffic engineering is an increasingly important problem

for the edge networks with multiple upstream ISPs. Sprite is scal-
able solution that offers a simple, high-level interface to network
administrators. In our future work, we plan to investigate new al-
gorithms for adapting the routing decisions based on observed per-
formance, to identify an appropriate timescale and granularity for
routing changes to react quickly to performance problems while
preventing oscillations. We also plan to conduct more extensive
experiments on our testbed and with the Princeton campus. We
also consider supporting more features in the high-level interface,
such as enforcing fairness of inbound traffic from multiple services.

Acknowledgments: We thank the Office of Information Technol-
ogy of Princeton University, especially Christopher Tengi, for pro-
viding the traffic data of the campus network. We thank Nanxi
Kang for initial discussions and feedback on the work. We also
thank Nick Feamster, Arpit Gupta, Mojgan Ghasemi, Roya Ensafi,
and the SOSR reviewers for feedback on the paper. The work is
supported by NSF grants CNS-1162112 and CNS-1409056.

References
[1] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman,

“A Measurement-based Analysis of Multihoming,” in ACM
SIGCOMM, 2003.

[2] D. K. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang,
“Optimizing Cost and Performance for Multihoming,” in
ACM SIGCOMM, 2004.

[3] A. Akella, B. Maggs, S. Seshan, and A. Shaikh, “On
the Performance Benefits of Multihoming Route Control,”
IEEE/ACM Transactions on Networking, vol. 16, pp. 91–104,
Feb. 2008.

[4] “Cisco Systems. Performance Routing (PfR).”
http://www.cisco.com/c/en/us/products/ios-nx-os-software/
performance-routing-pfr/index.html.

[5] “Cisco Optimized Edge Routing (OER).” http:
//www.cisco.com/en/US/tech/tk1335/tsd_technology_
support_sub-protocol_home.html.

[6] “Managed Internet Route Optimizer (MIRO).” http://www.
internap.com/network-services/ip-services/miro/.

[7] “netVmg’s Flow Control Platform (FCP) puts you in the
driver’s seat.” http://www.davidwriter.com/netvmgw/.

[8] “Sockeye’s GlobalRoute 2.0 for managed routing ser-
vices.” http://www.networkcomputing.com/networking/
sockeyes-globalroute-20-for-managed-routing-services/d/
d-id/1204992?

[9] “Google chooses RouteScience Internet technology,” July
2002. http://www.computerweekly.com/news/2240046663/
Google-chooses-RouteScience-Internet-technology.

[10] D. Clark, S. Bauer, K. Claffy, A. Dhamdhere, B. Huffaker,
W. Lehr, and M. Luckie, “Measurement and Analysis of Inter-
net Interconnection and Congestion,” in Telecommunications
Policy Research Conference (TPRC), Sep 2014.

[11] V. Valancius, N. Feamster, J. Rexford, and A. Nakao, “Wide-
area Route Control for Distributed Services,” in USENIX
ATC, 2010.

[12] S. Donovan and N. Feamster, “Intentional Network Monitor-
ing: Finding the Needle Without Capturing the Haystack,” in
ACM HotNets, 2014.

[13] “Netflix Open Connect.” http://openconnect.itp.netflix.com/.
[14] “Google Global Caching.”

http://peering.google.com/about/ggc.html.
[15] P. Sun, M. Yu, M. Freedman, J. Rexford, and D. Walker,

“HONE: Joint Host-Network Traffic Management in
Software-Defined Networks,” Journal of Network and
Systems Management, vol. 23, no. 2, pp. 374–399, 2015.

[16] http://floodlight.openflowhub.org/.
[17] B. Schlinker, K. Zarifis, I. Cunha, N. Feamster, and E. Katz-

Bassett, “PEERING: An AS for Us,” in ACM HotNets, 2014.
[18] R. K. Chang and M. Lo, “Inbound traffic engineering for

multihomed ASs using AS path prepending,” IEEE Network,
vol. 19, no. 2, pp. 18–25, 2005.

[19] R. Gao, C. Dovrolis, and E. W. Zegura, “Interdomain Ingress
Traffic Engineering Through Optimized AS-path Prepend-
ing,” in Networking Technologies, Services, and Protocols;
Performance of Computer and Communication Networks;
Mobile and Wireless Communications Systems, pp. 647–658,
Springer, 2005.

[20] F. Wang and L. Gao, “On Inferring and Characterizing Inter-
net Routing Policies,” in Internet Measurement Conference,
pp. 15–26, ACM, 2003.

[21] L. Cittadini, W. Muhlbauer, S. Uhlig, R. Bush, P. Francois,
and O. Maennel, “Evolution of Internet Address Space Deag-
gregation: Myths and Reality,” Journal on Selected Areas in
Communications, vol. 28, no. 8, pp. 1238–1249, 2010.

[22] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, and
S. Uhlig, “Interdomain Traffic Engineering with BGP,” IEEE
Communications Magazine, vol. 41, pp. 122–128, May 2003.

[23] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines
for Interdomain Traffic Engineering,” ACM SIGCOMM Com-
puter Communication Review, vol. 33, no. 5, pp. 19–30, 2003.

[24] B. Quoitin, S. Tandel, S. Uhlig, and O. Bonaventure, “In-
terdomain Traffic Engineering with Redistribution Communi-
ties,” Computer Communications, vol. 27, no. 4, pp. 355–363,

2004.
[25] B. Quoitin and O. Bonaventure, “A Cooperative Approach to

Interdomain Traffic Engineering,” in Next Generation Inter-
net Networks, pp. 450–457, IEEE, 2005.

[26] “Internap. Managed Internet Route Optimizer (MIRO).” http:
//www.internap.com/network-services/ip-services/miro/.

[27] “Noction. Intelligent Routing Platform.” http://www.noction.
com/intelligent_routing_platform.

[28] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “The Loca-
tor/ID Separation Protocol (LISP).” IETF Request for Com-
ments 6830, January 2013.

[29] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao,
S. Shenker, and I. Stoica, “HLP: A Next Generation Inter-
domain Routing Protocol,” in ACM SIGCOMM, Aug. 2005.

[30] A. Feldmann, L. Cittadini, W. Mühlbauer, R. Bush, and
O. Maennel, “HAIR: Hierarchical Architecture for Inter-
net Routing,” in Workshop on Re-architecting the Internet,
pp. 43–48, ACM, 2009.

[31] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson,
“Host Identity Protocol,” April 2008. RFC 5201.

[32] E. Nordmark and M. Bagnulo, “Shim6: Level 3 Multihoming
Shim Protocol for IPv6.” IETF Request for Comments 5533,
June 2009.

[33] R. J. Atkinson and S. N. Bhatti, “Identifier-Locator Network
Protocol (ILNP) Architectural Description.” RFC 6740, Nov
2012.

[34] C. De Launois, O. Bonaventure, and M. Lobelle, “The
NAROS Approach for IPv6 Multihoming with Traffic Engi-
neering,” in Quality for All, pp. 112–121, Springer, 2003.

