BigBug: Practical Concurrency Analysis for SDN

Roman May, Ahmed El-Hassany, Laurent Vanbever, Martin Vechev
ETH Zdrich

ABSTRACT

By operating in highly asynchronous environments, SDN
controllers often suffer from bugs caused by concurrency
violations. Unfortunately, state-of-the-art concurrency
analyzers for SDNs often report thousands of true vio-
lations, limiting their effectiveness in practice.

This paper presents BigBug, an approach for auto-
matically identifying the most representative concur-
rency violations: those that capture the cause of the
violation. The two key insights behind BigBug are that:
(i) many violations share the same root cause, and (ii)
violations with the same cause share common charac-
teristics. BigBug leverages these observations to cluster
reported violations according to the similarity of events
in them as well as SDN-specific features. BigBug then
reports the most representative violation for each clus-
ter using a ranking function.

We implemented BigBug and showed its practical ef-
fectiveness. In more than 100 experiments involving dif-
ferent controllers and applications, BigBug systemati-
cally produced 6 clusters or less, corresponding to a
median decrease of 95% over state-of-the-art analyz-
ers. The number of violations reported by BigBug also
closely matched that of actual bugs, indicating that Big-
Bug is effective at identifying root causes of SDN races.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Net-
work Operations; D.2.5 [Software Engineering]: Test-
ing and Debugging

Keywords

Software Defined Networking, OpenFlow, Commutativ-
ity Specification, Happens-before, Nondeterminism

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions @acm.org.

© 2017 ACM. ISBN 978-1-4503-4947-5/17/04.

DOI: http://dx.doi.org/10.1145/3050220.3050230

& 60001 o - 5th %-ile R
& —a— median R @
Z 5000 -A-- 95th %-ile| .- g ©
> 4000 3
o . o
= o
£ 3000 5
2 ®
© 2000 >
2 s
S 1000 ¢~ e -5thoile [2 T
© —=— median o
£ 0l ‘ ‘ oA 95th%-ilelo
200 300 400 500 600 700 800
Steps

Figure 1: Even when considering one application
(Floodlight Load Balancer) running in a star
topology with 4 hosts, the number of reported
true concurrency violations is huge. BigBug re-
duces it to 3 representative violations which,
when fixed, solves 99.28% of the violations.

1. INTRODUCTION

SDN controllers operate in highly asynchronous en-
vironments where events (e.g., packets arriving at a
switch) can be dispatched to the controller at any time,
non-deterministically. Programming highly asynchrono-
us programs is known to be hard. In particular, interfer-
ing accesses to shared variables (i.e., switch forwarding
table) can often lead to unwanted behaviors and bugs.
A classic example is a SDN controller which modifies
the forwarding table according to the packets it sees
and its internal state. Depending on the order in which
writes (FLOW_MOD) and reads (PACKET_IN) occur, the
forwarding state of the switch can differ dramatically.

Recently, SDNRacer [10, 20], a dynamic concurrency
analyzer, showed that it is possible to identify true-
positive concurrency violations —the real violations—
in existing SDN controllers. At its core, SDNRacer is
based on a Happens-Before (HB) model; a specification
of how different OpenFlow events are ordered. Given a
trace of OpenFlow events and the HB model, SDNRacer
builds a dependency graph (HB-graph) which it uses
to detect concurrency violations. Leveraging HB con-
currency analyzers is useful to troubleshoot violations
without the need to reproduce them [10, 20].

Problem While a precise concurrency analyzer is a
useful first step, often there are too many (thousands)

concurrency violations even for short traces. These vi-
olations are not false positives, and thus a sound HB
concurrency analyzer will report them. As an illustra-
tion, Fig. 1 depicts the number of violations reported
by SDNRacer as a function of the trace length collected
on Floodlight Load Balancer application [12, 8]. We can
see that an 800 steps trace (~2 minutes) generates no
less than 4,000 distinct concurrency violations! Clearly,
trying to sift through such a high number of (actual)
violations is practically challenging. In practice, we ex-
pect the number of violations to be much higher as SDN
controllers tend to run more than one application.
Intuitively, the number of causes that trigger these vi-
olations should (hopefully) be orders of magnitude less,
meaning that many violations originate from the same
cause (i.e., the same bug). Indeed, in Fig. 1, the con-
troller only contains two distinct bugs. While different
violations resulting from the same cause will differ in
some ways (e.g., because different packets trigger them),
one can expect that they share a common structure.

This work The key idea of our work is an approach and
an offline framework which can automatically process
thousands of SDN concurrency violations and identify
the most representative ones. BigBug takes as input a
set of violations reported by any SDN concurrency ana-
lyzer and clusters these reports into equivalence classes.
BigBug then selects the most representative violation
per class and presents it to the developer. The devel-
oper can then focus on understanding the root cause of
that violation, knowing that thousands of others share
the same characteristics. The blue part of Fig. 1 illus-
trates the benefits of BigBug: while the number of vi-
olations reported by SDNRacer grows linearly, BigBug
automatically reduces it down to 3 equivalence classes.

Challenges & Solutions Identifying the most repre-
sentative violations among 1,000s is challenging for at
least two reasons. First, to define a cluster, we need
to define a notion of distance between two distinct vi-
olations. Here, BigBug uses an isomorphism-based ap-
proach to initialize the clustering process using “look-
alike” violations. Yet, as many similar violations are not
isomorphic, BigBug leverages feature-based clustering
derived from domain-specific knowledge of SDN net-
works. Second, after a cluster is determined, BigBug se-
lects the most representative candidates for each cluster
S0 as to maximize usefulness for the developer.

Contributions Our main contributions are:

e A set of domain-specific features to measure the simi-

larities between concurrency violations (§4.1 and §4.2).

e A novel technique to cluster related concurrency vio-
lations using the set of domain-specific features (§4).

e A set of ranking techniques which allows BigBug to
select a representative candidate of each cluster (§5).

e A complete implementation of BigBug along with a
comprehensive evaluation where we show its practical

load-

balancer
SDN controller

) i I i T/@ Replica #1
@ (Internet :_
— ~ Replica #2
—_—
Host #1 M S]

Figure 2: An event sequence creating concur-
rency violations in Floodlight Load Balancer.

relevance: BigBug systematically reported 6 violations
or less in more than 100 experiments. In a case study,
we also show that solving the bug behind the reported
violations caused 99.23% of them to disappear (§6).

2. OVERVIEW

In this section, we provide a high-level overview of
BigBug. We start with a motivating example (§2.1), il-
lustrating how several concurrency violations can result
from the same bug in the SDN controller. We then high-
light how BigBug (§2.2) clusters a large number of con-
currency violations into few representative clusters.

2.1 Motivating Example

We consider a Floodlight controller running the de-
fault Load Balancer application which redirects Web
requests to two replicas in a round-robin fashion (Fig.
2). We assume that an external host, say Host#1, sends
a Web request, we call this a Host Send event, which
hits S1 @. As it is a new request, S1 directs it to
the controller using an OpenFlow PACKET_IN message
@. The controller selects the best replica, say R1, and
sends three OpenFlow messages to S1. The first one is
a FLOW_MOD to install a new forwarding entry to for-
ward packets from H1 to R1 ®). The second message
is also a FLOW_MOD that forwards packets from R1 to
H1 @. The third message is a PACKET_OUT that carries
the original packet sent to the controller &). S1 relies on
its flow table to forward that packet.

According to the specification [1], S1 can process these
three events in any order unless separated by barrier
messages. A possible execution is therefore S1 process-
ing the PACKET_OUT before the two FLOW_MOD mes-
sages. In this case, S1 does not have any flow entry
matching on the packet, and it sends another PACKET_IN
message to the controller as a result 6. This “ping-
pong” effect lasts until S1 installs the flow entry direct-
ing packets from H1 to R1. In addition to the obvious
inefficiencies, this behavior can also create serious for-
warding issues such as non-deterministic load-balancing
between the two replicas or forwarding loops [10, 20].

SDNRacer detects and reports all these violations—
every single one of them—which can amount to thou-
sands even in minutes-long traces. Analyzing and trou-
bleshooting all these violations is tedious for at least
four reasons. First, using classical debugging tools that

STS SDNRacer BigBug (83, §4)

(e} 8>O
o

Q Q
11! ||—>cc£0 E:O—> Pre-processing — Clustering —~ Ranking —»048;0
i 8 0 (o]
O
O race!

O~
0-0-0
A o)
events concurrency .
violations 'O\b B) represgnmnve
o(o» per-violation graphs
. " IY;

per-violation graphs clusters ranking
function

Figure 3: The pipeline of BigBug. Out of po-
tentially thousands of violations, BigBug reduces
them to a handful of representative ones which
closely map to actual controller bugs.

require replaying the log traces and fixing issues one-by-
one is infeasible as the concurrency violations are often
non-deterministic and hard to reproduce in test envi-
ronments. Second, violations originating from the same
bug might differ (either subtly or vastly), which makes
them hard to classify manually. In our previous exam-
ple, violations would differ in the number of “bounces”
observed between the controller and the switch. Worse,
multiple switches can also be involved leading to a com-
binatorial explosion in the number of distinct violations.
Third, the number of violations induced by each bug can
vary significantly (§6) and does not necessarily correlate
with the importance of the problem. For instance, ~90%
of the violations reported in Fig. 1 originate from this
benign bug. Fourth, a developer has no information on
the number of bugs that are causing the violations.

2.2 BigBug

To aid the debugging process, BigBug aims to present
the developer with only the representative violations
which, ideally, correspond to the actual bugs. This al-
lows SDN developers to focus on addressing the most se-
rious cases. BigBug reduces the number of concurrency
violations according to a three step process (Fig. 3).

Step 1: Pre-processing Out of a given execution trace,
a concurrency analyzer will typically build a directed
graph according to a Happen-Before (HB) relationship
(where event a is connected to b if @ happens before b).
The analyzer will then report a concurrency violation
for any two events which are unordered in the graph
(i.e., are disconnected), both events access the same lo-
cation, and one is a write.

As BigBug needs to compare violations together, a
pre-processing step first produces one sub-graph per vi-
olation given the HB-graph. This sub-graph only con-
tains the events that led to the violation.

Step 2: Clustering Given a set of per-violation graphs,
BigBug clusters these graphs into a number of (ideally,
representative of the bugs) classes. BigBug initializes
the clustering process by grouping all isomorphic per-
violation graphs. The intuition is that because these
graphs share the same sequence and structure of events,
they are more likely to exert the same code path (and

therefore the same bug) inside the controller.

While isomorphic-based clustering is efficient at iden-
tifying “look-alike” violations, different violations from
the same bug can take different shapes (as we illustrated
in §2.1). Therefore, in the second phase, to reduce the
number of clusters, BigBug applies a clustering strategy
based on whether two per-violation graphs are similar
with each other. BigBug defines this similarity based on
distance defined over a set of domain-specific features. If
two per-violation graphs exhibit the same features, they
are considered similar to each other and are clustered
together. BigBug uses several features for the distance
computation, for instance, two violations are closer to
each other if both have a packet bouncing between the
controller and the switch (as described in our example).

Step 3: Ranking Since the number of clusters reported
by BigBug is very low (6 or less in all experiments), each
of the clusters contains many violations, sometimes on
the order of 1,000s. In the final step, BigBug uses a
ranking function to select “the most interesting” viola-
tion representative of the entire cluster. This is done
by identifying the most commonly occurring features
in each cluster. We then select the per-violation graphs
that exhibit the most features and selects the smallest of
these, thus, showing the simplest representative graph.

3. PRE-PROCESSING

BigBug starts by pre-processing the output of SDN
concurrency analyzer: the directed graph induced by the
HB relationship (HB-graph) and a list of violations, to
produce one graph per-violation with only the events
that led to it.

In §3.1, we show how BigBug reduces the size of the
HB-graph. Then, in §3.2, we present how BigBug ex-
tracts sub-graphs to help analyzing each concurrency
violation individually in later stages.

3.1 Trimming SDNRacer HB-graph

While the number of events in each trace is large,
not all of these events pertain to concurrency viola-
tions. Such events are filtered by BigBug to reduce the
computational complexity of the following stages. Note,
BigBug does not detect new violations and it does not
remove any from the HB-graph.

BigBug removes three categories of events from the
HB-graph. First, it removes all the events that occurred
during the network initialization phase and did not cause
any concurrency violation such as the handshake mes-
sages between each switch and the controller. Second,
it removes all events that did not lead to a concurrency
violation. Third, it removes any redundant HB edges in
the HB-graph.

3.2 Extracting per-violation graphs

Even after removing irrelevant events, the resulting
HB-graph is still massive containing many events and
concurrency violations. As we are interested in how indi-

vidual concurrency violations compare with each other,
BigBug isolates each one of them into a separate graph
such that each graph contains a single concurrency vi-
olation with all the events that led to it. BigBug builds
the violation graphs by performing an upward traver-
sal of the HB-graph starting from the two events in-
volved in each violation until it reaches one of the entry
points (e.g., host send or proactive update) present in
the trace. Note that the violation graphs vary in size
and a single event may appear in multiple graphs, if it
causes more than violation.

4. HIERARCHICAL CLUSTERING

In this section, we describe BigBug hierarchical clus-
tering process. BigBug first relies on graph isomorphism
to initialize the set of clusters (§4.1). BigBug then re-
fines those by grouping related (but not equivalent) vi-
olations according to the SDN-specific features (§4.2)
they share. For this, BigBug relies on a distance metric
(84.3). We describe the full clustering algorithm in §4.4.

4.1 Cluster initialization

BigBug first clusters each violation according to an
isomorphic check, essentially grouping together viola-
tions containing equivalent event sequences.

In BigBug, we restrict the notion of event equivalence
to event type (not the actual content of the event).
Specifically, we say that two violation graphs G and
H are isomorphic (and therefore grouped in the same
cluster) if each node in G can be exactly mapped to a
node H with the same type and the same set of edges.

While checking for graph isomorphism can be done in
quasipolynomial time [2], it can still take a long time to
complete in practice. Therefore, we added a timeout of
10 sec for the isomorphism computation. If the timeout
is hit, two graphs are considered as not isomorphic and
put in different clusters. Observe that they can still be
clustered together in later stages A heuristic isomorphic
test can be used instead to speed up BigBug cluster
initialization (at the cost of accuracy) [9].

4.2 Identifying related violations through
SDN-specific Features

As a second step, BigBug uses SDN domain-specific
features computed over each graph to compute a dis-
tance matrix between clusters. This distance matrix is
then used to refine the initial clustering, clustering to-
gether closely related (but not equivalent) violations.
We identified these features by manually inspecting the
similarities among violation graphs of many known bugs
traces. Then, we tested the learned features against dif-
ferent known bugs in real controllers. Other features can
be discovered using machine-learning techniques.

BigBug uses two different feature types: (i) boolean
features that either exist or not in a violation graph,
e.g. the graph has a packet flooding event; and (i) nu-
merical features that represent how often the feature is

present in the graph, e.g. the number of Host Send.
Formally, let G be the set of graphs in cluster Cj,
F; : Gx — N be a function that returns the number
computed for feature i. If feature 7 is boolean, F; returns
1 if a graph has this feature, 0 otherwise. If feature i is
numerical, F; returns the actual number of features.
We now present the seven different features currently
implemented in BigBug (adding additional ones is easy).

1. Controller/Switch bouncing: This boolean fea-
ture captures repeated PACKET_IN and PACKET_OUT
events between the controller and a given switch for
the same given packet. This situation occurs when
the controller does not use proper synchronization
primitives to ensure the rule that matches the packet
has been committed to the Flow Table before sending
the PACKET_OUT back to the switch.

2. Reply packets: This boolean feature captures if the
violation was triggered by a host replying to a packet
that it received. Often, the controller simultaneously
installs bidirectional path for a flow. The intuition
behind this feature is to consider concurrency viola-
tions affecting the same flow closer to each other.

3. Flow expiry: OpenFlow allows flow entries to expire
after a certain specified (hard or soft) timeout [1].
While soft timeout helps cleaning the flow table, defin-
ing the timeout is usually tricky in asynchronous en-
vironments. Often, early flow expiry leads to many
concurrency violations. This boolean feature captures
violations caused by a flow expiry event.

4. Flooding: Often controllers flood packets for various
reasons; i.e., the controller discovering the network
topology or it is not aware of the location of the des-
tination host of the packet. However, the paths and
the event ordering that follows a packet flood is com-
pletely non-deterministic (hence, not isomorphic). If
miss-handled, flooded packets cause concurrency vi-
olations. The corresponding graphs are often com-
pletely different. As such, this boolean feature simply
captures if packet flooding caused the violation.

5. Number of root events: This feature returns the
number of root events in the violation graph. A root
event is an event with only outgoing edges in the
violation graph. The number of root events indicates
if the violation is caused by one or more events.

6. Number of host sends: This feature returns the
number of host send events.

7. Number of proactive violations: SDNRacer dis-
tinguishes two types of events: reactive and proac-
tive. Reactive events are the ones sent by the con-
troller in response to received messages, while proac-
tive are sent independently. This feature returns the
number of proactive events involved in the violation.

Our experiments (§6) and manual analysis of var-
ious HB-graphs indicated that not all features carry

the same significance in relating two violations. For in-
stance, violations sharing the flooding feature tend to be
more related than violations sharing reply packets one.
We capture this effect in the distance function (§4.3) by
assigning different weights to each feature.

4.3 Distance Calculation

After BigBug extracts the features of each graph in a
given cluster, it computes the mean of each feature in
the cluster. Let {g1,...,9n} € Gk be the set of graphs
in cluster Cj. The mean of feature 7 is computed as:

k_ Zﬁ;‘fkl Fi(g1)
' |G|

Our distance calculation algorithm then computes the
distance between every two clusters per-feature. The
computation treats boolean and numerical features dif-
ferently. For boolean features, two clusters are closer to
each other if they contain a similar number of occur-
rences of the feature. For numerical features, two clus-
ters are closer to each other if they share the same mean.
Specifically, BigBug computes the per-feature distance
between two clusters C; and Cj, as:

m

d; = abs(m! — mF) 4 — {O if ml = mk

1 if ml £ mk

if 4 is a boolean feature if 7 is a numerical feature

We assign different weights for each of the j features
(84.2). The distance between two clusters C; and Cy, is:

i=1

BigBug computes the distance matrix between all the
clusters and then feed it to the clustering algorithm.

When the hierarchical clustering algorithm (§4) groups
several clusters into new clusters. For the distance be-
tween these groups, we use the distance between the
farthest neighbors (also known as complete linkage) as
the distance between the clusters.

4.4 Clustering Algorithm

We now describe BigBug hierarchical clustering algo-
rithm, which is a case of agglomerative clustering [13].

The six major steps of the algorithm are: Step 1, ini-
tialize the clusters using the isomorphic check (§4.1).
Step 2, evaluate all the pair-wise distances (§4.3). Step
3, construct a distance matrix using distances values.
Step 4, merge the cluster pairs with shortest distances
and remove them from the distance matrix. Step 5, eval-
uate all distances from this new cluster to all other clus-
ters, and update the matrix. Step 6, repeat until the
distance matrix is reduced to a single element or the
distances are longer than a predefined threshold.

S. RANKING

While the clustering algorithm groups the concur-
rency violations into a small number of clusters, the

number of violations per cluster is large, potentially in
the order of 1,000s. Our ranking function selects the
most representative violation for each cluster.

The main intuition is to find the smallest graph that
exhibits the most common features across all graphs in
one cluster. The ranking function starts with examining
the boolean features first. It selects all violation graphs
that have all the boolean features exhibited in 50% or
more of the reported violations in the cluster. The sec-
ond stage is to reduce the set of chosen graphs based
on the numerical features. For numerical features, we
chose the graphs with the minimum difference between
the feature in the given graph and the overall mean for
the cluster. The order of selecting the graphs based on
the numerical features is: proactive violation events, the
number of Host Sends and finally the number of root
events. For the final set of chosen graphs, our ranking
function selects the graph with the minimum number of
events to present to the controller developer.

6. EVALUATION

We implemented a working prototype of BigBug and
used it to filter out the output produced by SDNRacer [10].
We evaluate on multiple different applications of differ-
ent controllers on a variety of topologies to show its us-
ability. The results show, that BigBug is of great use in
finding representative violations, that hold enough in-
formation to fix them and when fixed, reduce the num-
ber of violations by more than 99%. Additionally, we
evaluate the performance and show that BigBug finishes
analyzing traces within one second for 60% of traces.

Experimental setup We use BigBug to find violations
produced by actual SDN controllers in multiple network
topologies (15 repetitions, 200 steps!) on a server with
two Intel Xeon E5-2670 CPUs and 128GB of RAM. We
report the number of violations for Floodlight v0.91 [12]
and POX EEL [17] on the following applications:

e Admission Control (Floodlight [5]): Enforces rules to
either allow or block communication between hosts.

e Circuit Pusher (Floodlight [4]): Proactively installs
routes between any two hosts in the network.

e Forwarding (Floodlight [6], POX [19]): Builds and up-
dates network wide MAC address table.

e Learning Switch (Floodlight [7], POX [18]): Builds
and updates MAC address table on per switch basis.

e Load Balancer (Floodlight [8]): Balances the load on
multiple hosts behind a virtual IP address.

We generated the traces on three different network
topologies: single; linear; and binary tree. The single
topology consists of one switch connected to two hosts
(we used four hosts for the Load Balancer). The linear

'We present results for longer traces at http://sdnracer.
ethz.ch/long.pdf. BigBug completes processing traces of
1,000 in less than 1.2 hours in the worst case

SDNRacer BigBug Cluster Sizes

App Controller Events Violations Isomorphic Final Clusters Median Max
Adm. Ctrl. Floodlight ~ 908 81 26 (32.10 %) 3 (3.70 %) 24 33
CircuitPusher ~ Floodlight 1017 39 6 (15.38 %) 2 (5.13 %) 19.5 32
Forwarding Floodlight 3016 288 58 (20.14 %) 3 (1.04 %) 31 215
POX EEL 5632 310 160 (51.61 %) 4 (1.29 %) 64.5 143

LearningSwitch Floodlight 6658 344 210 (61.05 %) 5 (1.45 %) 48 155
POX EEL 3408 66 61 (92.42 %) 2 (3.03 %) 33 46

LoadBalancer Floodlight 17593 1910 272 (14.24 %) 5 (0.26 %) 204 1362

Table 1: BigBug performance on traces computed over a binary tree topology (200 steps, median on

15 repetitions).

topology consists of two hosts that are connected via
two switches. The binary tree consists of seven switches
with four host connected to the leaves.

A simple sensitivity analysis led us to use the fol-
lowing weights for the distance function (§4.3): Con-
troller /Switch Bouncing, Packet Flood, and Flow Ex-
piry have weight 2. Number of Proactive Violations has
weight 1.5. Number of Host Sends has weight 1. Num-
ber of root events and Reply Packets have weight 0.5.
The maximum distance for the merging of clusters was
set to 2. We are aware that different weights can result
in an even better (or worse) clustering and leave a full
sensitivity analysis for later work.

Usability BigBug reports a small number of concur-
rency violations to the developer, moreover, fixing only
these reported violations significantly reduces the num-
ber of violations exhibited by the controller.

Table 1 shows that BigBug is able to reduce the num-
ber of reported violations by up to three orders of mag-
nitude. Clustering isomorphic graphs already reduces
the number of violations by more than 66% in 50%
of all cases. The feature-based agglomerative clustering
further reduces them to less than 95% of the reported
violations of SDNRacer in 50% of the cases.

To demonstrate the usability of BigBug, we used the
reported violations by BigBug to fix the Floodlight Load
Balancer application. When tested on the fixed version,
the number of clusters reported by BigBug dropped
from 3 to 2 and the number of violations was reduced
by 99.23%.

It is worth mentioning that not all concurrency viola-
tions in SDN networks are fixable. This due the inherent
lack of OpenFlow synchronization primitives that order
packets upon entering or while traversing the network.
However, recent SDN systems give the controller the
ability to synchronize packet entry to the network [25].

Performance For the experiments reported in Table 1,
BigBug finished in less than one second for 60 % of all
the experiments, and only 5% of the experiments took
more than 216 seconds with a worst case of 21 minutes
(for Floodlight Load Balancer on binary tree).

The 10 seconds timeout for isomorphic check was trig-
gered in only 2.08% of the checks of POX EEL For-
warding Application on binary tree. This application
has a flooding-related concurrency violation which cre-
ates large violation graphs spanning the entire network.

BigBug can process subsets of the trace (windowing)
which would be helpful to troubleshoot longer traces.
The intuition here is that individual races are usually
“concentrated” and do not last over the entire trace.

7. RELATED WORK

Grouping or clustering concurrency violation reports
has been applied for event-driven concurrency analyz-
ers in other domains [3, 16, 22, 21, 15, 23]. The main
difference is that our clustering method is based on fine-
grained semantic HB information rather than coarse-
grained indicators (e.g., whether an operation in a vi-
olation is in the framework [3]). Also, BigBug does not
rely on static analysis and actually considers the con-
troller code as a black box. Thanks to this, our cluster-
ing approach based on HB information is general and
can thus benefit existing analyzers such as [3].

BigBug also goes beyond reducing the number of false
positives produced by traditional concurrency analyzers
by automatically reasoning about the common causes
underlying the violations using domain-specific knowl-
edge [11, 14, 24].

8. CONCLUSION

In this paper we introduced BigBug, a generic frame-
work to automatically narrow down the most represen-
tative concurrency violations, i.e. the ones that better
illustrate the likely root cause of an actual bug. To do so,
BigBug clusters the violations reported by concurrency
analyzers into few equivalence classes (using graph iso-
morphism and SDN-specific features) before reporting
the most relevant violation in each class.

We implemented BigBug and show that it is practi-
cally effective. In all our experiments, BigBug reduced
the reported violations to 6 or less. More importantly,
fixing the bugs behind the violations reported by Big-
Bug made the vast majority of the violations disappear.

9. REFERENCES

[1] OpenFlow Switch Specification. Version 1.0.0.
https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/
openflow /openflow-spec-v1.0.0.pdf.

[2] L. Babai. Graph Isomorphism in Quasipolynomial
Time. Computing Research Repository (CoRR),
abs/1512.03547, 2015.

[3] P. Bielik, V. Raychev, and M. Vechev. Scalable
Race Detection for Android Applications. In
OOPSLA. ACM, 2015.

[4] Big Switch Networks, Inc. Floodlight Circuit
Pusher Application.
https://github.com/floodlight /floodlight /tree/v0.
91 /apps/circuitpusher, 2013.

[5] Big Switch Networks, Inc. Floodlight Firewall.
https:
//github.com/floodlight /floodlight /tree/v0.91/
src/main/java/net /floodlightcontroller /firewall,
2013.

[6] Big Switch Networks, Inc. Floodlight Forwarding
Application. https://github.com/floodlight/
floodlight /blob/v0.91/src/main/java/net /
floodlightcontroller /forwarding /Forwarding.java,
2013.

[7] Big Switch Networks, Inc. Floodlight Learning
Switch. https://github.com/floodlight/floodlight/
tree/v0.91/src/main/java/net/
floodlightcontroller /learningswitch, 2013.

[8] Big Switch Networks, Inc. Floodlight
Load-Balancer Application. https://github.com/
floodlight /floodlight /tree/v0.91/src/main/java/
net /floodlightcontroller/loadbalancer, 2013.

[9] D. G. Corneil and D. G. Kirkpatrick. A
Theoretical Analysis of Various Heuristics for the
Graph Isomorphism Problem. SIAM Journal on
Computing, 1980.

[10] A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever,
and M. Vechev. SDNRacer: Concurrency Analysis
for Software-defined Networks. In PLDI. ACM,
2016.

[11] C. Flanagan and S. N. Freund. FastTrack:
Efficient and Precise Dynamic Race Detection. In
ACM PLDI ’09.

[12] Floodlight Open SDN Controller.
http://projectfloodlight.org/floodlight.

[13] A. K. Jain and R. C. Dubes. Algorithms for

Clustering Data. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1988.

[14] B. Kasikei, C. Zamfir, and G. Candea. Data
Races vs. Data Race Bugs: Telling the Difference
with Portend. In ASPLOS XVII. ACM, 2012.

[15] W. Le and M. L. Soffa. Path-based Fault
Correlations. In ACM SIGSOFT International
Symposium on Foundations of Software

Engineering (FSE). ACM, 2010.
[16] W. Lee, W. Lee, and K. Yi. Sound Non-Statistical

Clustering of Static Analysis Alarms. In
International Workshop on Verification, Model
Checking, and Abstract Interpretation. Springer,
2012.

[17] J. McCauley. POX: A Python-based OpenFlow
Controller. https://github.com/noxrepo/pox.

[18] J. McCauley. POX EEL Forwarding Application.
https://github.com/noxrepo/pox/blob/eel /pox/
forwarding/12_multi.py, 2015.

[19] J. McCauley. POX EEL L2 Learning Switch.
https://github.com/noxrepo/pox/blob/eel /pox/
forwarding/12_learning.py, 2015.

[20] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever,
and M. Vechev. SDNRacer: Detecting
Concurrency Violations in Software-defined
Networks. In SIGCOMM Symposium on Software
Defined Networking Research (SOSR). ACM,
2015.

[21] T. Muske. Improving Review of Clustered-Code
Analysis Warnings. In Software Maintenance and
Evolution (ICSME). IEEE, 2014.

[22] T. Muske, A. Baid, and T. Sanas. Review Efforts
Reduction by Partitioning of Static Analysis
Warnings. In Source Code Analysis and
Manipulation (SCAM). IEEE, 2013.

[23] T. Muske and A. Serebrenik. Survey of
Approaches for Handling Static Analysis Alarms.
In Proceedings of 16th International Working
Conference on Source Code Analysis and
Manipulation. IEEE, 2016.

[24] S. Narayanasamy, Z. Wang, J. Tigani,

A. Edwards, and B. Calder. Automatically
Classifying Benign and Harmful Data Races
Using Replay Analysis. In PLDI. ACM, 2007.

[25] J. Perry, A. Ousterhout, H. Balakrishnan,

D. Shah, and H. Fugal. Fastpass: A Centralized
"Zero-Queue” Datacenter Network. In SIGCOMM.
ACM, 2014.

