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1. INTRODUCTION

As modern networking applications become increasingly
dynamic and high-bandwidth, software defined networking
(SDN) has emerged as an agile, cost effective architecture
with widespread adoption across industry. In SDN, the
control-plane program runs on a logically-centralized con-
troller which directly configures the packet-handling mech-
anisms in the underlying switches using an open API (e.g.,
OpenFlow). While the controller makes it exceptionally con-
venient for a network operator to control and manage a net-
work, the controller requires complex logic and becomes a
single point of failure within the network. As a result, con-
figuration errors by the controller could be extremely costly
for the network provider.

Several SDN controllers have been developed since the
conception of SDN, and network operators have utilized very
traditional means of identifying bugs in the controller, such
as unit testing and model checking [1|. However, it has be-
come apparent that these methods cannot practically handle
the inherent complexity of the controller platform that man-
ages large networks. Ultimately, one major source of this
complexity are network failures, as they trigger execution of
unexplored portions of code; these network failures are in-
evitable, costly, and considering all possible interleaving of
bugs is simply unfeasible.

To address this problem, we propose “Chaos Monkey” a
real-time post-deployment failure injection tool. Inspired by
industry practices in the cloud [2], Chaos Monkey is intended
to systematically introduce failure (e.g., link failure, network
failure) into a network. Chaos Monkey is guided by the
following design principles:

e Realistic: The distribution of the injected failures
should mirror reality.

e Manageable: Minimize the changes of completely de-
stroying the network.

e Coverage: The injected failures should maximize the
amount of controller code executed.
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Figure 1: Overview of Chaos Monkey Architecture.

e Leveraging network redundancies: The injected
failures should not disconnect the graph.

e Detecting network-wide invariant violations: The
injected failures should aim at uncovering given invari-
ant violations, e.g., reachability guarantees.

The concept of injecting failures into a live production
network system is certainly counter-intuitive, but we assert
that there is no better way to efficiently simulate actual
network usage than within the actual runtime environment.
Testbeds cover a limited case and simply do not scale up to
production levels; some problems — inherently complex and
difficult to reproduce — only manifest at scale.

2. IMPLEMENTATION

There are three major components that are necessary to
achieve the ultimate goal of dynamic failure injection and
invariant verification. These components and their roles are
illustrated in Figure 1.

Chaos Monkey utilizes a OpenVirteX (OVX) 3] as a means
of monitoring and affecting the network state. OVX sits
between the network and the SDN controller, relaying mes-
sages between them. To perform the invariant checking,
Chaos Monkey employs NetPlumber [4]. NetPlumber pro-
vides a real-time solution to verifying invariants, such as
forwarding loops, in the network topology. This module re-
ceives updated flow table information from OVX, checks for
invariants, and provides the network operator with feedback.
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Next, we describe the Chaos Monkey Pipeline and how
NetPlumber and OVX fit into it:

Step 1: Define Failure Scenarios The primary purpose
of this module is to compute a set of devices to fail under
constraints. The anticipated use case of Chaos Monkey is for
the network operator to iteratively test and refine the way
Chaos Monkey injects failure into the network. Ultimately,
the nature of these failures are described by a failure model.

The Failure Scenario constrains the behavior of the Chaos
Monkey and the definition of this model is critical in find-
ing a balance where Chaos Monkey realistically injects as
many effective failures as possible without totally disrupt-
ing the overall functionality of the network. Since there are
often several possible sets of failure scenarios, the best mod-
els is governed by probabilistic models that can be toggled
by the network operator. This allows the network operator
to throttle the amount of failures during times of reduced
network usage.

Step 2: Inject Failures Up to this point in the process,
no failure has actually been injected into the network. The
purpose of this module is to schedule and subsequently in-
ject the failures. In the previous step, the network operator
has specified which subset of network resources to target;
this module determines how frequently Chaos Monkey will
fail the nodes. For example, this can allow the network op-
erator to schedule Chaos Monkey by throttling the amount
of failures during times of increased network usage. As far
as the actual injection of failure, Chaos Monkey has some
selection of failure classes to choose from. The failures are in-
jected into the network using OVX’s REST API, which has
been extended to accommodate additional failure classes.
At this point in the research, there exist implementations
for network failure scenarios (e.g. switch down, link down)
and increasing latency in the OpenFlow channel. There are
many failure scenarios to consider beyond these, and we are
actively extending our API to encompass more failure sce-
narios.

Step 3: Check Network Invariants The final module
consists of the network invariant checker. Omnce the fail-
ures have been computed and injected into the network, the
invariant checker analyzes the latest updates. Upon receiv-
ing the new network state, such as a topology change or a
new flow table entry, NetPlumber analyzes the information
against its invariants. Assuming the network has been prop-
erly updated, everything continues to operate with the new
failures and the updated policy. If the latest policy violates
an invariant, the information is logged for the network op-
erator to analyze, the failure is undone, and the previous
policy can be reinstalled in the network.

3. PROOF OF CONCEPT

Our proof of concept consists of creating a scenario in
which the controller incorrectly installs a forwarding loop in
the network upon the failure of a link.

The figure depicts a route in red from H1 to H2 that is
configured by the SDN Controller, while the backup route,
in green, is the path that the network should take upon the
injection of failure; the backup route is pushed when the
S4-S5 link is severed. When OVX reports the updated flows
to NetPlumber, there are two outcomes depending on the
controller and policies in question. A transient forwarding

Figure 2: Example topology with a forwarding loop.

loop can be created, if the controller pushes flows to the
switches in the order: S1, S6, S4, S2, S5. In this case, since
the original red route flows have not yet been removed by
the controller, there will be a transient forwarding loop cir-
culating between S2, S3, and S4. On the other hand, no net-
work invariants would be violated if the routes are pushed
in the order: S5, S2, S4, S6, S1. The Chaos Monkey algo-
rithmically decides on a link to fail and detects the violated
network invariant.

4. CONCLUSION

In this paper, we have laid the foundation for post-deployment
failure injector for SDN Controllers. While this testing paradigm

has been used in various cloud computing applications, this
is the first step towards developing a solution for realtime
SDN Controller verification. With many classes of network
failure, it will be a continued effort to extend the SDN Chaos
Monkey such that we can demonstrate coverage across pos-
sible failure classes. Developers of the controller platform
will be able to use the SDN Chaos Monkey tool to test how
the controller responds to any sequence of failures that could
reasonably occur in the network. There are truly an endless
amount of failures that could appear in the network, and it
would be unreasonable for anyone — even Chaos Monkey — to
cover them all. However, the Chaos Monkey utility encour-
ages a testing paradigm that leads to continual and constant
improvement on a complex piece of software upon which the
entire network depends on. As the SDN controller becomes
a more reliable and stable software agent, the SDN move-
ment will gain further credibility and continue to disrupt the
landscape of networking.
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