
Laurent Vanbever

ETH Zürich (D-ITET)

Network programmability

A primer on routing synthesis

January 18 2017

Schloss Dagstuhl

Human factors are responsible

for 50% to 80% of network outages

Juniper Networks, What’s Behind Network Downtime?, 2008

The outage was due to

one faulty Internet device

The outage was due to a change to

 the site’s configuration systems

NYSE network operators identified

the culprit of the 3.5 hour outage,

blaming the incident on a

“network configuration issue”

National Research Council. The Internet Under Crisis Conditions: Learning from September 11

Internet advertisements rates

suggest that

The Internet was more stable

than normal on Sept 11

Internet advertisements rates

suggest that

The Internet was more stable

than normal on Sept 11

Information suggests that

operators were watching the news

instead of making changes

to their infrastucture

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Think of the network as a distributed system

running a distributed algorithm

IP router

This algorithm produces the forwarding state

which drives Internet traffic to its destination

Control plane

Data plane

Control plane

Data plane
Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

dest

Google

Yahoo!

ETHZ

0

… …

next-hop

… …
Skype

Forwarding state

1

0

2

0
1

2

Operators adapt their network forwarding behavior

by configuring each network device individually

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

Configuring each element is often done manually,

using arcane low-level, vendor-specific “languages”

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

	redistribute	bgp	700	subnets

A single mistyped line is enough

to bring down the entire network

Anything else than 700 creates blackholes

How can we program network-wide

 forwarding state in existing networks?

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

next-hop

300k
…… …

100.0.0.0/8

Forwarding state

1

0

1

0

1

The forwarding state computed by a router

depends on two inputs

0

1

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	

The router configuration specifies

how the router compute its state

0

1

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

next-hop

300k
…… …

100.0.0.0/8

Forwarding state

1

0

1

“I can reach 1.0.0.0/24”

The routing messages sent

by neighboring devices

Given a forwarding state we want to program,

we therefore have two ways to provision it

way 1

way 2

Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesize

Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesizeoutput

inputs

functions

Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

[SIGCOMM’15]

Joint work with:  
Stefano Vissicchio, Olivier Tilmans and Jennifer Rexford

Fibbing

Fibbing
= lying

to control router’s forwarding table

Fibbing

lying made useful

Fibbing1

Expressivity
any path, anywhere

2

Scalability
1 lie is better than 2

3

Central Control Over Distributed Routing

lying made useful

Fibbing1

Expressivity
any path, anywhere

Scalability
1 lie is better than 2

Central Control Over Distributed Routing

Forwarding

Paths

Routing 
Messages

MPLS

OSPF

BGP

A router implements a function

from routing messages to forwarding paths

IP router

functioninput output

The forwarding paths are known,

provided by the operators or by the controller

Forwarding

Paths

Known

Routing 
Messages

MPLS

OSPF

BGP

functioninput output

input output

Known

The function is known, from the protocols’

specification & the configuration

Forwarding

Paths

Routing 
Messages

MPLS

OSPF

BGP

function

Inverse

Given a path and a function, our framework computes

corresponding routing messages by inverting the function

Forwarding

Paths

Routing 
Messages

MPLS

OSPF

BGP

functioninput output

IGP

BGP

Router Input

Network graph

Routing paths

Family

Dijkstra

Decision process

Algorithm/

Function

Link-State

Path-Vector

The type of input to be computed depends

on the routing protocol

Protocol

IGP

BGP

Router Input

Network graph

Routing paths

Family

Dijkstra

Decision process

Algorithm/

Function

Link-State

Path-Vector

We focus on routers running link-state protocols

that take the network graph as input and run Dijkstra

Protocol

3

10

1

1

A B

C D

destinationsource

traffic flow

Consider this network where a source

sends traffic to 2 destinations

3

10

1

1

A B

C

desired

3

10

1

1

A B

C D

initial

As congestion appears, the operator wants

to shift away one flow from (C,D)

D

impossible to achieve by  
reweighing the links

Moving only one flow is impossible though

as both destinations are connected to D

desired

3

10

1

1

A B

C
3

10

1

1

A B

C D D

initial

3

1

1

A B

C

Let’s lie to the router

10

D

3

1

1

A B

C

Let’s lie to the router

10

D

Fibbing  
 controller

routing
session

3

1

1

A B

C

Let’s lie to the router, by injecting

fake nodes, links and destinations

10

D

Fibbing  
 controller

routing
session

3

1

1

A B

C

Let’s lie to the router, by injecting

fake nodes, links and destinations

10

D

Fibbing  
 controller

A

C

Lie

15

11

3

1

1

A B

C

Lies are propagated network-wide

by the protocol

10

D

Fibbing  
 controller

A

C

A

C

Fibbing  
 controller

3

1

1

A B

C

10

D

15

1

1

After the injection, this is the topology seen

by all routers, on which they compute Dijkstra

Fibbing  
 controller

3

1

1

A B

C

Now, C prefers the virtual node (cost 2)

to reach the blue destination…

1

15

D

10
1

Fibbing  
 controller

3

1

1

A B

C

As the virtual node does not really exist,

actual traffic is physically sent to A

1

15

D

10
1

Fibbing
workflow

+

network
graph

path
reqs.

Fibbing starts from the operators requirements

and a up-to-date representation of the network

Syntax of Fibbing’s path requirements language

Operators requirements are expressed

in a high-level language

Compilation

+

network
graph

path
reqs.

forwarding
DAGs

Out of these,

the compilation stage produces DAGs

+

augmented
graph

Augmentation

forwarding
DAGs

network
graph

path
reqs.

The augmentation stage augments the network graph

with lies to implement each DAG

+

augmented
graph

reduced  
graph

Optimization

forwarding
DAGs

network
graph

path
reqs.

The optimization stage reduces

the amount of lies necessary

+

reduced  
graph

running
network

Injection

augmented
graph

forwarding
DAGs

network
graph

path
reqs.

The injection stage injects

the lies in the production network

lying made useful

Fibbing

Expressivity
any path, anywhere

2

Scalability
1 lie is better than 2

Central Control Over Distributed Routing

Fibbing is powerful

Theorem

Fibbing is powerful

Fibbing can program

any set of non-contradictory paths

Theorem

Fibbing is powerful

Fibbing can program

any set of non-contradictory paths

Theorem

Fibbing is powerful

any path is loop-free

paths are consistent

(e.g. [s1, a, b, d] and

[s2, b, a, d] are inconsistent)

(e.g., [s1, a, b, a, d] is not possible)

Fibbing can program

any set of non-contradictory paths

10

3

3

3

3

10

1

1

A B C D

E F G H

Fibbing can load-balance traffic

on multiple paths

10

3

3

3

3

10

1

1

A B C D

E F G H

source destination

0.75

0.75

0.50

demand

A B C D

E F G H

10

3

3

3

3

10

1

1

Links have a capacity of 1

0.75

0.75

0.50

0.75

0.50

0.75

A B C D

E F G H

10

3

3

3

3

10

1

1

Links have a capacity of 1

0.75

0.75

0.50

0.75

0.50

0.75

A B C D

E F G H

10

3

3

3

3

10

1

1

With such demands and forwarding,

the lower path is congested (1.25)

10

3

3

3

3

10

1

1

0.75

0.75

0.50

0.75

0.75

A B C D

E F G H

0.25

0.25

Congestion can be alleviated by splitting

the orange flow into two equal parts (.25)

0.75

0.75

0.50

0.75

0.50

0.75

A B C D

E F G H

10

3

3

3

3

10

1

1

This is impossible to achieve

using a link-state protocol

10

3

3

3

3

10

1

1

0.75

0.75

0.50

0.75

0.75

A B C D

E F G H

0.50

This is easily achievable with Fibbing

10

3

3

3

3

10

1

1

0.75

0.75

0.50

0.75

0.75

A B C D

E F G H

0.50

6

1

50

One lie is introduced,

announcing the orange destination

10

3

3

3

3

10

1

1

0.75

0.75

0.50

0.75

0.75

A B C D

F G H

0.25

0.25

6

1

50

Now E has two equal cost paths (7) to reach

only the orange destination and use them both

E

lying made useful

Fibbing

Expressivity
any path, anywhere

Scalability
1 lie is better than 2

3

Central Control Over Distributed Routing

Scalability

space

of lies

time

to compute lies

Scalability

space

of lies

time

to compute lies

Scalability

Computing virtual topologies is easy:

polynomial in the number of requirements

initial desired

A

B

C

3
1

3
A

B

C

3
1

3

Computing virtual topologies is easy:

polynomial in the number of requirements

initial

A

B

C

3
1

3

virtual

?

Computing virtual topologies is easy:

polynomial in the number of requirements

A

B

C

3
1

3

desired

For each router r whose next-hop

for a destination d changes to j:

For each router r whose next-hop

for a destination d changes to j:

Let w be the current path weight between r and d

Create one virtual node v advertising d  
with a weight x < w

Connects it to r and j

Create one virtual node v advertising d  
with a weight x < w

Create one virtual node v advertising d  
with a weight x < w

always possible

by reweighting the initial graph

initial

A

B

C

3
1

3

virtual

?

Computing virtual topologies is easy:

polynomial in the number of requirements

desired

A

B

C

3
1

3

initial

A

B

C

3
1

3
A

B

C

2

1

3

virtual

Computing virtual topologies is easy:

polynomial in the number of requirements

1

1

3

desired

A

B

C

3
1

3

The resulting topology can be huge

and each router needs to run Dijkstra on it

Dijkstra’s algorithm

complexity

O(|E| + |V| log |V|)

#nodes #links

space

of lies

time

to compute lies

Scalability

Lots of lies are not required,

some of them are redundant

Good news

Let’s us consider

a simple example

1

1 10

100

1

1

A B

C D E F

1

1 10

100

1

1

A B

C D E F

destination

A B

C D E F

source

1

1 10

100

1

1

A B

C D E F

1

1 10

100

1

1

original shortest-path

“down and to the right”

A B

C D E F

1001

1 10

1

1

desired shortest-path

“up and to the right”

A B

C D E F

1001

1 10

1

1

100
1

100
1

100

1

1001

100

1

Our naive algorithm would

create 5 lies—one per router

A B

C D E F

1001

1 10

1

1

100

1

A single lie is sufficient (and necessary)

We can minimize the topology size

using an Integer Linear Program

time

Naive

optimal

large

Integer Linear

Program

slow

optimalspace
(topology size)

While efficient,

an ILP is inherently slow

Computation time matters

in case of network failures

3

1

1

A B

C

1

15

D

1 10

3

1

1

A B

C

1

15

D

1 10

3

1
A B

C

1

15

D

1 10

A loop is created as C starts to use A

which still forwards according to the lie

3

1
A B

C

1

15

D

1 10

The solution is to remove the lie

3

1
A B

C D

10

The solution is to remove the lie

Upon failures, the network topology

has to be recomputed, fast

time

Naive

optimal

large

Integer Linear

Program

slow

optimalspace
(topology size)

time

Naive

optimal

large

Merger

fast

small

Integer Linear

Program

slow

optimalspace
(topology size)

A B

C D E F

1001

1 10

1

1

100
1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100
1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

time

Naive

optimal

large

Merger

fast

small

Integer Linear

Program

slow

optimalspace
(topology size)

time

Naive

optimal

large

Merger

fast

small

Integer Linear

Program

slow

optimalspace
(topology size)

Let’s compare the performance

of Naive and Merger

% of nodes changing next-hop

computation
time (s)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

% of nodes changing next-hop

computation
time (s)

0 20 40 60 80

% of nodes changing next−hop

tim
e

(s
ec

)

0.
00

1
0.

1
10

simple
merger (95−th)
merger (median)
merger (5−th)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

naive (median)

Naive computes entire virtual topologies in ms

naive (median)

% of nodes changing next-hop

computation
time (s)

0 20 40 60 80

% of nodes changing next−hop

tim
e

(s
ec

)

0.
00

1
0.

1
10

simple
merger (95−th)
merger (median)
merger (5−th)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

merger (median)

Merger is relatively slower,

but still, sub-second

topology
increase (%)

% of nodes changing next-hop

0

20

80

40

60

0 20 60 8040

% of nodes changing next-hop

0 20 40 60 80

0
20

40
60

80

% of nodes changing next−hop

of

 fa
ke

 n
od

es
 (%

 o
f t

ot
al

 n
od

es
)

simple
merger (95−th)
merger (median)
merger (5−th)

% of nodes changing next-hop

0

20

80

40

60

0 20 60 8040

naive (median)

topology
increase (%)

% of nodes changing next-hop

Naive introduces one lie

per changing next-hop

0 20 40 60 80

0
20

40
60

80

% of nodes changing next−hop

of

 fa
ke

 n
od

es
 (%

 o
f t

ot
al

 n
od

es
)

simple
merger (95−th)
merger (median)
merger (5−th)

0 20 40 60 80

0
20

40
60

80

% of nodes changing next−hop

of

 fa
ke

 n
od

es
 (%

 o
f t

ot
al

 n
od

es
)

simple
merger (95−th)
merger (median)
merger (5−th) naive (median)

% of nodes changing next-hop

0

20

80

40

60

0 20 60 8040

topology
increase (%)

% of nodes changing next-hop

Merger reduces the size of the topology

by 25% on average (50% in the best case)

merger (median)

We implemented a fully-fledged Fibbing

prototype and tested it against real routers

We implemented a fully-fledged Fibbing

prototype and tested it against real routers

How many lies can a router sustain?

How long does it take to process a lie?

2 measurements

1000

5 000

10 000

router
memory (MB)

0.7

76.0

153

50 000

100 000

6.8

14.5

fake
nodes

DRAM is cheap

Existing routers can easily sustain

Fibbing-induced load, even with huge topologies

Because it is entirely distributed,
programming forwarding entries is fast

1000

5 000

10 000

50 000

100 000

fake
nodes

installation
time (s)

0.9

44.7

89.50

4.5

8.9

894.50 μs/entry

lying made useful

Fibbing

Expressivity
any path, anywhere

Scalability
1 lie is better than 2

Central Control Over Distributed Routing

Fibbing realizes some of the SDN promises

today, on an existing network

Facilitate SDN deployment

SDN controller can program routers and SDN switches

Simplify controller implementation

most of the heavy work is still done by the routers

Maintain operators’ mental model

good old protocols running, easier troubleshooting

http://fibbing.net

Check out our webpage

http://fibbing.net

Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

current focus

under submission

Works with a single protocol family

Dijkstra-based shortest-path routing

Can lead to loads of messages

if the configuration is not adapted

Suffers from reliability issues

need to remove the lies upon failures

Fibbing is limited by the configurations

running on the routers

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	

router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	

Network specification (N)

Physical topology (φN)

High-level requirements (φR)

SyNET

!	
!	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Inputs Outputs

Network specification (N)

Physical topology (φN)

High-level requirements (φR)

Inputs

A set of Datalog rules that

formalize how routers build

their forwarding state

Fwd(Net,	Node,	Next)	:-	
		Route(Net,	Node,	Next,	Proto),	
		SetAD(Protocol,	Node,	Cost)	
		minAD(Net,	Node,	Cost)

Network specification (N)

Physical topology (φN)

High-level requirements (φR)

Inputs

A set of constraints over the

input predicates of the Datalog

program

Network specification (N)

Physical topology (φN)

High-level requirements (φR)

Inputs

A set of constraints over the

output predicates of the Datalog

program

“Traffic from R1 to R5

 should flow via R2 and R3”

Network specification (N)

Physical topology (φN)

High-level requirements (φR)

Inputs

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	

router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	

Network specification (N)

Physical topology (φN)

High-level requirements (φR)

SyNET

!	
!	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Inputs Outputs

Given N,φN, φR

SyNet generates a Datalog input I such that the

problem

topology φN and routing φR constraints are satisfied

for the given network specification N

Given N,φN, φR

SyNet generates a Datalog input I such that the

this is undecidable (in general)challenge

problem

topology φN and routing φR constraints are satisfied

for the given network specification N

Given N,φN, φR

SyNet generates a Datalog input I such that the

this is undecidable (in general)challenge

problem

key ideas

“scale” using domain-specific heuristics

convert into a satisfiability question (on SMT constraints)

make the problem finite, use divide-and-conquer

topology φN and routing φR constraints are satisfied

for the given network specification N

protocols

routers

static

static, OSPF

static, OSPF, BGP

4 9 16

SyNET can generate configurations

for (small) networks

protocols

routers

static

static, OSPF

static, OSPF, BGP

4 9 16

1.8s

4.2s

13.8s

18.2s

37.0s

189.4s

116.1s

197.0s

577.4s

SyNET can generate configurations

for (small) networks

protocols

routers

static

static, OSPF

static, OSPF, BGP

4 9 16

1.8s

4.2s

13.8s

18.2s

37.0s

189.4s

116.1s

197.0s

577.4s

SyNET can generate configurations

for (small) networks (new version goes to 81 routers)

synet.ethz.ch

Check out our webpage

http://synet.ethz.ch

Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

Raw network programmability is only the beginning,

what about configuration updates?

[SIGCOMM’11, INFOCOM’12, TON’12, TON’13, INFOCOM’13, TON’17]

Raw network programmability is only the beginning,

what about network visibility?

[Hotnets’16]

Monitor

Analyze Plan

Execute

Adaptative

Networked System

Network controller

control

algorithms

programmabilityvisibility

Laurent Vanbever

www.vanbever.eu

Network programmability

A primer on routing synthesis

January 18 2017

Schloss Dagstuhl

http://www.vanbever.eu

