Network programmability

A primer on routing synthesis

Laurent Vanbever

ETH Zirich (D-ITET)

Schloss Dagstuhl
January 18 2017

Human factors are responsible

for 50% to 80% of network outages

Juniper Networks, What’s Behind Network Downtime?, 2008

Forbes

The Little Black Book of Bll'lonalre sccrets

\l 11,261 V=As

jUnited Airlines Blames Router for Grounded Flights

_ Alexandra Talty, ovimuiio:
= very ' ‘
] | e WO A & =

| |~
4 -

Cpenions coreszed by Forbez Zortributors ace tzir oan.,
FULLEIQ v

After a computer problem caused nearly two hours of grounded flights for United Airlines this morning and ongoing
delays thronghont the day, the airline announced the culprit: a faulty router.

Spoekeswoman Jennifer Dohm said that the router problem caused “degraded network connectivity,” which affected
variona applications.

A computer gliteh in the airline’s reservations system caused the Federal Aviation Administration to impose a
groundstop at 8:26 u.m. E.T. Plunes thut were in the air continued to operate, but all plunes on the ground were held.
There were reports of agents writing tickets by hand. The ground stop was lifted around 9:47 a.m. ET.

The outage was due to
one faulty Internet device

Facebook, Tinder, Instagram suffer
widespread 1ssues

BY JENNI RYALL

MAAF (FTTY USRFS

UPDATED: Tuesnsy, Jan. 27/ 4:32 5.m. EST — A Facebcok enokesvoman told Mzshsbie
that the outage was dua 1o a chenge to the slte's configuration systems. and rol a hecker
attack. "Carlier this eveninc many people had trouble accessing Nacebcok and Instagram.
This was nct the result of a third party attac« but instead occurred afier we introduced a

chznge that =flected our configuration eyetame. We movad quickly 1o fix iha problem, anc

aoth sarvices are nac< 1o 100% for everyone.”. she said.

UPDATED: Tuesday, Jan. 27/ 2:14 a.m. CST — lMNacebcok, Tinder and Twitter appearto be
oack to normal &fter a 40 minute outage and mass freak out.

The outage was due to a change to
the site’s configuration systems

Traders work on the floor of the New York Stock Exchange (NYSE) in July 2015.
(Photo by Spencer Platt/Getty Images)

UPDATED: “Configuration Issue”
Halts Trading on NYSE

The article has been updated with the time trading resumed.

A second update identified the cause of the outage as a
“configuration issue.”

A third update added information about a software
update that created the configuration issue.

NYSE network operators identified
the culprit of the 3.5 hour outage,
blaming the incident on a
“network configuration issue’

Tie_lnl_cmel Under
Grisis
GConditions

Learning from September 11

Committee on the Internet Under Crisis Conditions:
Learning from September 11

Computer Science and Telecommunicatiors 3card
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

OF THE NATIONAL ACADIMES

National Research Council. The Internet Under Crisis Conditions: Learning from September 11

The]ntgmet Under
Grisis
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions:
Leaming from September 11

Computer Science and Telecommunicatiors Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

Internet advertisements rates

suggest that

The Internet was more stable

than normal on Sept 11

Tlle_lnlgmet Under
Grisis
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions:
Leaming from September 11

Computer Science and Telecommunicatiors Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

Internet advertisements rates
suggest that
The Internet was more stable

than normal on Sept 11

Information suggests that
operators were watching the news
instead of making changes

to their infrastucture

Job Snijders {x 2 Follow
‘ JobSnijders

Fun fact: most BGP route leaks happen on
Wednesdays, but in the weekend us humans
collectively take a break! :-)

Route leaks vs. Day of Week (2008 - 2016)
24.00%

18.00%
g 12.00%
€
6.00%
0.00%
Sun Mon Tue Wed Thu Fri Sat

Day of Week (UTC)

B Percentage of
routeleaks

Think of the network as a distributed system

running a distributed algorithm

Control plane

Data plane !

Control plane & e
.’.
A \V

Control plane

Data plane

.

.

.
‘l

... Control plane

Data plane

VZ
T e,
s '

Data plane

/ "0,... ‘
IP router . -

Control plane

Data plane

>

7

(

Control plane
PIane p,

.

Control plane
Data plane
L
Data plane /)
Control plane 4+**" '

A’ Data plane

Control plane

Data plane

This algorithm produces the forwarding state
which drives Internet traffic to its destination

Forwarding state

dest next-hop
Google 0
0 Yahoo! 1
Control plane | Sk»’/'r')e 0
Data plane
2 ETHZ 2

Operators adapt their network forwarding behavior
by configuring each network device individually

Configuring each element is often done manually,
using arcane low-level, vendor-specific “languages”

Cisco I0S

!
ip multicast-routing
!
interface Loopbacke
ip address 120.1.7.7 255.255.255.255
ip ospf 1 area ©
!
!
interface Etherneto/o
no ip address
!
interface Etherneto/0.17
encapsulation dotl1lQ 17
ip address 125.1.17.7 255.255.255.0
ip pim bsr-border
ip pim sparse-mode
!
!
router ospf 1
router-id 120.1.7.7
redistribute bgp 700 subnets
!
router bgp 700
neighbor 125.1.17.1 remote-as 100
|

address-family ipv4

redistribute ospf 1 match internal external 1 external 2

neighbor 125.1.17.1 activate
!
address-family ipv4 multicast

network 125.1.79.0 mask 255.255.255.0
redistribute ospf 1 match internal external 1 external 2

Juniper JunOS

interfaces {

s0-0/0/0 {
unit @ {
family inet {
address 10.12.1.2/24;

}
family mpls;

}

}
ge-0/1/0 {

vlan-tagging;

unit @ {
vlan-id 100;
family inet {

address 10.108.1.1/24;

}
family mpls;

}

unit 1 {
vlan-id 200;
family inet {

address 10.208.1.1/24;

}

}

}

}

protocols {
mpls {
interface all;
}

bep {

A single mistyped line is enough
to bring down the entire network

redistribute bgp 700 subnets Anything else than 700 creates blackholes

How can we program network-wide
forwarding state in existing networks?

The forwarding state computed by a router
depends on two inputs

Forwarding state
prefix next-hop
] 1.0.0.0/24 0
/ o
2 1.0.1.0/16] ' ’

300k 100.0.0.0/8 0 1

600k 200.99.0.0/24 1

The router configuration specifies
how the router compute its state

!
ip multicast-routing
I

interface Loopbacke
ip address 120.1.7.7 255.255.255.255

ip ospf 1 area ©
! 0

| ’

interface Etherneto/0

no ip address
!

interface Etherneto/0.17

encapsulation dotl1Q 17

ip address 125.1.17.7 255.255.255.0
ip pim bsr-border 1
ip pim sparse-mode
!
!
router ospf 1
router-id 120.1.7.7
redistribute bgp 700 subnets
!
router bgp 700
neighbor 125.1.17.1 remote-as 100
!
address-family ipv4
redistribute ospf 1 match internal external 1 external 2
neighbor 125.1.17.1 activate
!
address-family ipv4 multicast

mmdr tmwml, 1T 1 =Y\ N vame~l, AI'" AI'" Y N

The routing messages sent
by neighboring devices

Forwarding state

prefix next-hop
] 1.0.0.0/24 0
2 1.0.1.0/16]
300k 100.0.0.0/8 0

600k 200.99.0.0/24 1

Given a forwarding state we want to program,
we therefore have two ways to provision it

Given a network-wide forwarding state

to provision, one can synthesize

the routing messages shown to the routers

the configurations run by the routers

Given a network-wide forwarding state

output to provision, one can synthesize

inputs the routing messages shown to the routers

functions the configurations run by the routers

Network programmability

Fibbing SyNET

“the inputs” “the functions”

Network programmability

Fibbing SYNET
“the inputs” “the functions”
[SIGCOMM’15]

Stefano Vissicchio, Olivier Tilmans and Jennifer Rexford

Fibbing

Fibbing

= |lying

Fibbing

to control router’s forwarding table

Central Control Over Distributed Routing

1 Fibbing

lying made useful

2 Expressivity

any path, anywhere

3 Scalability
1 lie is better than 2

Central Control Over Distributed Routing

1 Fibbing

lying made useful

Expressivity

any path, anywhere

Scalability
1 lie is better than 2

A router implements a function
from routing messages to forwarding paths

input function output
 MPLS
Routing » BEEE Forwarding
Messages BGP Paths
> >

IP router

The forwarding paths are known,
provided by the operators or by the controller

output
MPLS
| OSPF > |
Routing > Forwarding
Messages BGP Paths

>

Known

The function is known, from the protocols’
specification & the configuration

function
MPLS
Routing SRl Forwarding
Messages BGP Paths

..

Given a path and a function, our framework computes
corresponding routing messages by inverting the function

input function output

| MPLS
Routing > BEEE Forwarding
Messages BGP Paths

Inverse

The type of input to be computed depends
on the routing protocol

Protocol Family Algorithm/ Router Input
Function
IGP Link-State Dijkstra Network graph

BGP Path-Vector Decision process Routing paths

We focus on routers running link-state protocols
that take the network graph as input and run Dijkstra

Protocol Family Algorithm/ Router Input
Function

IGP Link-State Dijkstra Network graph

Consider this network where a source
sends traffic to 2 destinations

source destination

traffic flow

As congestion appears, the operator wants
to shift away one flow from (C,D)

initial desired

Moving only one flow is impossible though
as both destinations are connected to D

desired

DR

@
=t

impossible to achieve by
reweighing the links

@

10

b

Let’s lie to the router

10 1

\f?

Let’s lie to the router

l]l

-

Fibbing =
controller
T
A B
Q \ \routing
session
10]
c) b

Let’s lie to the router, by injecting
fake nodes, links and destinations

lll

s

Fibbing =
controller
-I ““““““
SR
Q \ \routing

session

10 1

\f?

Let’s lie to the router, by injecting
fake nodes, links and destinations

lll

s

Fibbing ==
‘ controller
1 / Lie
A B
O—0" " &
3 X
10 1 e ©

Lies are propagated network-wide
by the protocol

ljl

® .
©

— controller

After the injection, this is the topology seen
by all routers, on which they compute Dijkstra

[
Fibbing e
controller

-
o*
o*
o*
o*
.
R
0"
R
o
o"
o
*
0
”‘
o
.
0
*
*

’ R
‘) 10]

Now, C prefers the virtual node (cost 2)
to reach the blue destination...

ljl

s

Fibbing =
controller

As the virtual node does not really exist,
actual traffic is physically sent to A

lll

s

Fibbing =
controller

workflow

Fibbing starts from the operators requirements
and a up-to-date representation of the network

path network
reqgs. graph

Operators requirements are expressed
in a high-level language

Syntax of Fibbing’s path requirements language

pol = (81;...;5n) Fibbing Policy
S = p|b Requirement
T = prandpz | prorpz | p Path Req.

P = Path(n™) Path Expr.

n = id| * | n1 and n2 | n1 or nz Node Expr.

n = id| * | n1 and n2 | n1 or ny Node Expr.

b = r as backupof ((idi,id2)") Backup Req.

Out of these,
the compilation stage produces DAGs

Compilation
I e e B
— O<§>O€? — (3
— o
path network forwarding

reqgs. graph DAGs

The augmentation stage augments the network graph
with lies to implement each DAG

Augmentation
CnnO\ _______ o
— B C(ﬂ?do — 2 ¢
forwarding augmented

DAGs graph

The optimization stage reduces
the amount of lies necessary

Optimization

-O
— — ~0
o ‘o ©

augmented reduced
graph graph

The injection stage injects
the lies in the production network

Injection

S
— o —> %ﬁ;@
=

reduced running
graph network

Central Control Over Distributed Routing

Fibbing

lying made useful

2 Expressivity

any path, anywhere

Scalability
1 lie is better than 2

Fibbing is powerful

Fibbing is powerful

Theorem Fibbing can program

any set of non-contradictory paths

Fibbing is powerful

Theorem Fibbing can program

any set of non-contradictory paths

Fibbing is powerful

Theorem Fibbing can program

any set of non-contradictory paths

——— any path is loop-free

(e.g., [s1, a, b, a, d] is not possible)

—— paths are consistent

(e.g. [s1, a, b, d] and
[s2, b, a, d] are inconsistent)

Fibbing can load-balance traffic
on multiple paths

source destination

demand

0.75

0.50

0.75

Links have a capacity of 1

0.75

0.50

0.75
0.50

0.75

Links have a capacity of 1

With such demands and forwarding,
the lower path is congested (1.25)

0.75

0.50

0.75

Congestion can be alleviated by splitting
the orange flow into two equal parts (.25)

A B C D
/0.25\

E F G H
\0.25 /

This is impossible to achieve
using a link-state protocol

0.75

0.50

0.75

This is easily achievable with Fibbing

One lie is introduced,
announcing the orange destination

A)— B C
.\a‘, ““““ 50
1%»
6
E F G

Now E has two equal cost paths (7) to reach
only the orange destination and use them both

Central Control Over Distributed Routing

Fibbing

lying made useful

Expressivity

any path, anywhere

3 Scalability
1 lie is better than 2

Scalability

time space
to compute lies # of lies

time space
to compute lies # of lies

Computing virtual topologies is easy:
polynomial in the number of requirements

Computing virtual topologies is easy:
polynomial in the number of requirements

initial desired

Computing virtual topologies is easy:
polynomial in the number of requirements

initial desired virtual

For each router r whose next-hop

for a destination d changes to j:

For each router »r whose next-hop

for a destination d changes to j:

Let w be the current path weight between r and d

Create one virtual node v advertising d

with a weight x < w

Connects it to r and j

Create one virtual node v advertising d
with a weight x < w

always possible

by reweighting the initial graph

Create one virtual node v advertising d
with a weight x < w

Computing virtual topologies is easy:
polynomial in the number of requirements

initial desired virtual

Computing virtual topologies is easy:
polynomial in the number of requirements

initial desired virtual

The resulting topology can be huge
and each router needs to run Dijkstra on it

Dijkstra’s algorithm O(‘E‘ + |V‘ Iog |V‘)

complexity ‘ ‘

#nodes #links

time space
to compute lies # of lies

Lots of lies are not required,
some of them are redundant

Let’s us consider
a simple example

destination

original shortest-path
“down and to the right”

desired shortest-path
“up and to the right”

Our naive algorithm would
create 5 lies—one per router

|
M
Ve

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

A single lie is sufficient (and necessary)

We can minimize the topology size
using an Integer Linear Program

While efficient,
an ILP is inherently slow

Naive Integer Linear
Program
time optimal slow

space large optimal

Computation time matters
in case of network failures

A loop is created as C starts to use A
which still forwards according to the lie

The solution is to remove the lie

O
%

The solution is to remove the lie

Upon failures, the network topology
has to be recomputed, fast

Naive Integer Linear
Program

time optimal slow

space large optimal

Naive Merger Integer Linear
Program

time optimal fast slow

space large small optimal

Merger iteratively tries to merge lies
produced by the Naive algorithm

Merger iteratively tries to merge lies
produced by the Naive algorithm

] 100
100 (A B !
]
C D E
1000 100,
‘ o\ ‘ N

Merger iteratively tries to merge lies
produced by the Naive algorithm

1 100
100 (A B !
]
C D E
100, L

Merger iteratively tries to merge lies
produced by the Naive algorithm

1 100
1
~# \]OO A B
Ve
)
C D E
100, L

Merger iteratively tries to merge lies
produced by the Naive algorithm

Merger iteratively tries to merge lies
produced by the Naive algorithm

)
p
1 ’ 1 00
& \]OO A B
Ve
}
C D E

Merger iteratively tries to merge lies
produced by the Naive algorithm

'
Vo
1 7100
A 2 J ———
C D E

Merger iteratively tries to merge lies
produced by the Naive algorithm

Naive Merger Integer Linear
Program

time optimal fast slow

space large small optimal

Let’s compare the performance
of Naive and Merger

Naive Merger

time optimal fast

space large small

computation
time (s)

10 —

0.1 —

0.001 -

| | |
20 40 60

% of nodes changing next-hop

80

Naive computes entire virtual topologies in ms

computation 10 —
time (s)

0.1 —

naive (median)

0.001 - 7=

| | | | |
0 20 40 60 80

% of nodes changing next-hop

Merger is relatively slower,
but still, sub-second

computation 10 —
time (s)

merger (median)

_ ,WMW

naive (median)

0.001 — A |

| | | | |
0 20 40 60 80

% of nodes changing next-hop

topology
increase (%)

80 —

60 —

40 —

20 —

| | |
20 40 60

% of nodes changing next-hop

80

Naive introduces one lie
per changing next-hop

topology 80 —
increase (%) _ _
naive (median)
60 —
40 —
20 —
0

| | | | |
0 20 40 60 80

% of nodes changing next-hop

Merger reduces the size of the topology
by 25% on average (50% in the best case)

topology 80 —
increase (%) _ _
naive (median)
60 —
40 —
merger (median)
20 —
0

| | | | |
0 20 40 60 80

% of nodes changing next-hop

We implemented a fully-fledged Fibbing
prototype and tested it against real routers

We implemented a fully-fledged Fibbing
prototype and tested it against real routers

How many lies can a router sustain?

How long does it take to process a lie?

Existing routers can easily sustain
Fibbing-induced load, even with huge topologies

fake router

nodes memory (MB)
1000 0.7

5000 6.8

10 000 14.5

50 000 76.0

100 000 153 DRAM is cheap

Because it is entirely distributed,
programming forwarding entries is fast

fake installation
nodes time (s)
1000 0.9

5000 4.5

10 000 8.9

50 000 44.7

100 000 89.50 894.50 ps/entry

Central Control Over Distributed Routing

Fibbing

lying made useful

Expressivity

any path, anywhere

Scalability
1 lie is better than 2

Fibbing realizes some of the SDN promises
today, on an existing network

Facilitate SDN deployment

SDN controller can program routers and SDN switches

Simplify controller implementation

most of the heavy work is still done by the routers

Maintain operators’ mental model

good old protocols running, easier troubleshooting

Check out our webpage

http://fibbing.net

Fibbing: Small Lies for Better Networks

Fibbing is an architscture tna: enables cantral comtro’ cver aistibuted routing. This
way, it combines the advantagss of SEN (Hexcbility, exprassivity, and manageablity)
and traclitional (robustness, and scaabllity) epproacnes.

Fibbing intraducss fake nodes ard Irks inte an urderyirg link-stats rourrg
protlocol, so that raulers compule ther own Torearding lables based on the
augmertzsd topology. Fiebing is exprassive, and readily suppaorts tlexinle load
balancing, traffic engineering, and bacx<up rodtes. Fibhing works wth any
unmadified roulers speaking OSPE.

fake node

W af e
\A ""0‘22,\\
g w‘
S |

I Fibbing won ths Bas: Faper Award at SIGCOMM 2¢° 5!

Read the papers Look at the presentations

http://fibbing.net

Carlo Daffara “ cdaffara - Nov 13

Oh boy. A totally new way of thinking about the basis of SDN. Looks
simple and practical. Will test. fibbing.net

* X V¥ 1 oo

B3 OpenDaylight Project and 2 others follow

Jan-Erik Mangs “jemangs - Nov 17
Fibbing: Central Control Over Distributed Routing < Brilliant :-) fibbing.net

o 3 v

B} AMS-IX and 1 other follow

\ Michiel Appelman “michielappelman - Aug 21
Interesting concept and cool webpage: fibbing.net — Central Control Over

Distributed Routing

5 Olivier Bonaventure Retweeted

E ACM SIGCOMM CACMSIGCOMM - Aug 20

SIGCOMM 2015 best paper award: “Central Control Over Distributed

Routing" by Vissicchio et. Al., conferences.sigcomm.org/sigcomm/2015/p...
#sigcomm2015

Brian Krent ©BrianKrent - Nov 13
T “Central Control Over Distributed Routing”
~ fibbing.net/files/sig15.pdf

“Fibbing: Small Lies for Better Networks”
4> fibbing.net

B} CSAIL at MIT follows
John Evdemon ©jevdemon - Nov 13

Fibbing is an architecture that enables central control over distributed routing.
' Interesting idea. fibbing.net

Network programmability

Fibbing
“the inputs”

SYNET

“the functions”

current focus

under submission

Fibbing is limited by the configurations
running on the routers

Works with a single protocol family

Dijkstra-based shortest-path routing

Can lead to loads of messages

if the configuration is not adapted

Suffers from reliability issues

need to remove the lies upon failures

Inputs

Network specification (N)

Physical topology (¢pn) SYNET

High-level requirements (pg)

Outputs

!

ip mu |

! ip mu™
1Qter! |
1p ainter ,
1p 0 ip a,

! ip o |
! |
interi

InO iinter,
: M9 1 router bgp 700

inten | neighbor 125.1.17.1 rem
enca inter | 18 R

ip @ enca
ip p
ip p ip p
ipp
address-family ipv4 mul
route network 125.1.79.0 mas
redistribute ospf 1 ma
redi neighbor 125.1.17.1 ac

router ospf 1
router-id 120.1.7.7
redistribute bgp 700 su

address-family ipv4
redistribute ospf 1 ma
neighbor 125.1.17.1 ac

Inputs

Network specification (N)

Physical topology (pn)

High-level requirements (@r)

Network specification (N)

A set of Datalog rules that
formalize how routers build
their forwarding state

Fwd(Net, Node, Next) :-
Route(Net, Node, Next, Proto),
SetAD(Protocol, Node, Cost)
minAD(Net, Node, Cost)

A set of constraints over the

Physical topology (¢pn) input predicates of the Datalog
program

A set of constraints over the

output predicates of the Datalog

program
High-level requirements (@r)

“Traffic from R1 to R5
should flow via R2 and R3”

Inputs

Network specification (N)

Physical topology (¢pn) | SYNET

High-level requirements (pg)

Outputs

!

ip mu |

! ip mu™

1Qter! |
1p ainter ,
1p 0 ip a,

! ip o .

! |

interi

|no iinter,

: N9 1 router bgp 700

inteP! ighb 125.1.17.1
. ne or .1.17.1 rem
enca jnter , 18

ip @ enca
ip p
ip p ip p
ipp
address-family ipv4 mul
network 125.1.79.0 mas
redistribute ospf 1 ma
neighbor 125.1.17.1 ac

router ospf 1
router-id 120.1.7.7
redistribute bgp 700 su

address-family ipv4
redistribute ospf 1 ma
neighbor 125.1.17.1 ac

route

Given N, @n, ©r

SyNet generates a Datalog input / such that the

topology @~ and routing g constraints are satisfied

for the given network specification N

SyNet generates a Datalog input / such that the

topology @~ and routing prconstraints are satisfied

for the given network specification N

challenge this is undecidable (in general)

SyNet generates a Datalog input / such that the

topology @~ and routing ¢r constraints are satisfied

for the given network specification N

this is undecidable

key ideas make the problem finite, use divide-and-conquer

convert into a satisfiability question (on SMT constraints)

“scale” using domain-specific heuristics

SYNET can generate configurations
for (small) networks

static

protocols static, OSPF

static, OSPF, BGP

routers

9

16

SYNET can generate configurations
for (small) networks

4 9 16
static 1.8s 18.2s 116.1s
static, OSPF 4.2s 37.0s 197.0s

static, OSPF, BGP 13.8s 189.4s 577.4s

SYNET can generate configurations
for (small) networks (new version goes to 81 routers)

4 9 16
static 1.8s 18.2s 116.1s
static, OSPF 4.2s 37.0s 197.0s

static, OSPF, BGP 13.8s 189.4s 577.4s

Check out our webpage

synet.ethz.ch

SyNet: Network-wide Configuration Synthesis

SyNet aLlcnalicaly syntbasizas conligural oms o roulars roniirg multiple
interacting ootccals, ncudirg paloy-kased prowoccis (BGP) are shortest-oatn
proocols (OSPF), anc it asc suppors stalic rocles, SyNet guera-tess rel 1he
natwok's routars corvarca to 3 forearang stata that confomms wit~ all nigh-leve
requramens provided by e nebwork operator.

Glabal Requirements

Pala [0.0, . 007213, A, A 20000
PatzilD.0.2.0724, A, &, 210

R A N P T L T WY
Farsit90.0.10.0.524, 0, 'T.0h
C R LI B I P T |
®28ch!l0.2.2.2/24, 2. [1 Router A Confiq
Reach (20.0.1.3724, 2, [.
%aach[.0.2.2.3/2%, <. LI Rovter B Confin
s - u' 'M‘M
5yN.| .. ‘Rawtar D Corfly
| 1 106G _ekecloms o b
- o rete e S v et ias
Ny o BGE DUPG SRkl Aevdvs s i y L aiimae 2300 & 255 855,607 aos
$20.0.12.0/24) p . in s cavt 0
= PO s e T
) e CENTwom WAL QAL EERN TGS

ip aicay _X0.¢ . &
2ea 00,208 288 20
ip cepc SasT S .
LN STty W0 b
It el "AANDNHIN YYD
N7

10010224 0200
Network Topology

Why Multiple Protocols?

HoLting protocs & have diffarsnt excresanencss. Cenligunng mutipke orotoce = 13 trenefors oten requred to croducs a fowarding
SR SCrPlEt witt the Dperator s requremsnta,

Automatic vs. Manual Configuration

Aeuting protocs s ame complec. Momawer, coalaconis often heese coorglex intercependencies. For ecanp e, DEP uses indedomisin
rautirg costs ax irpot for sebecting the b racte. Not susseising y, she majorsy of retwers deonlbirres ane caosed by ineomeet

http://synet.ethz.ch

Network programmability

Fibbing SyNET

“the inputs” “the functions”

Raw network programmability is only the beginning,
what about configuration updates?

[SIGCOMM’11, INFOCOM’12, TON’12, TON’13, INFOCOM’13, TON’17]

® @ s vanbever_phd thesis online.pdf (page 1 of 202)

Methods and techniques for
disruption-free network
reconfiguration

Laurent Vanbever

Thesis subrnutted in partial fulfillment of the requirements for
the Degree of Doctor in Applied Sciences

October 2012

Pole d’'mgénierie informatique
ICTEAM
Université catholique de Louvain
Louvain-la-Neuve
Belgique

Raw network programmability is only the beginning,
what about network visibility?

@] ®
Mv

C,

Q

[Hotnets’16]

= vanbever_millefeulle_honets_2018.pdf (page 1 of 7) -

th £ v o oy Q Search

Mille-Feuille: Putting ISP traffic under the scalpel

Olivier Tilmans ‘», Tobias Blhler ¥, Stefano Vissicchio !, Laurent Vanbever 8
t Université cathol que de Louvain, S ETH Zurich, ! University College London
folivier.tilmans€uclouvair. ke, §{b'_xehler:t. » lvarbaver}fethz. ch,
fs.vissicchiolles.uel.ac.uk

ABSTRACT Inputs MilsFadle 55, 54 Datput
— A 8 . Pl _ab __ Stlecton - Schaduling - ois | Yiokatin
For Internet Service Provider (ISP) operators, getting an ac- - [e = 11 ras (10 masd for
. " . . - » Rees Topdegy Snsics refiix w Pl 1Googla
curate picture of how their network hehaves is challenging. 62 il P 20 o pme p) mirrored traffic batween A ane €
- . - =
Given the tralfic volumes that their networks carry and the < A0t B
mirer vl for e c'n

impossibility to contral enc-hosts, ISP operators are typi-
cally forced to randemly sample traffic, and rely on aggre-
zated statistics. This provides coarse-grained visidility, ot a
time resolution that 1s far from ideal (seconds or minutes).
In this paper, we present Milie-Feuille, a novel menitor-
ing architecture that provides fine-grained visibility over ISP
wrzffic. Mille-Feuille schedules activation and deactivation

Figure 1: 'rom high-level requirements, Mille-Feuille act:-
vatcs and dcactivates finc-grained mirroring rules network-
wide, to capture thin slices of trathc, at scale, in Q(ms).

operators lack control of which aggregated statistics are re-
noted By each device and when Thic noncdetermiriem (in

controller

> Analyze — Plan
k“ l’
Sy o
v
_ control
Monltor R TITTPTTTTTTI IS >] R TITTTTTTTTTIIIT > Execute
algorithms
I I
Visibility programmability
‘ Adaptative ‘

Network programmability

A primer on routing synthesis

Laurent Vanbever

www.vanbever.eu

Schloss Dagstuhl
January 18 2017

http://www.vanbever.eu

