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Human factors are responsible 

for 50% to 80% of network outages

Juniper Networks, What’s Behind Network Downtime?, 2008





The outage was due to  

one faulty Internet device





The outage was due to a change to 

 the site’s configuration systems





NYSE network operators identified  

the culprit of the 3.5 hour outage,  

blaming the incident on a 

“network configuration issue”



National Research Council. The Internet Under Crisis Conditions: Learning from September 11



Internet advertisements rates

suggest that 

The Internet was more stable

than normal on Sept 11 



Internet advertisements rates

suggest that 

The Internet was more stable

than normal on Sept 11 

Information suggests that

operators were watching the news

instead of making changes 

to their infrastucture
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Think of the network as a distributed system 

running a distributed algorithm

IP router



This algorithm produces the forwarding state 

which drives Internet traffic to its destination
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Operators adapt their network forwarding behavior 

by configuring each network device individually



!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

Configuring each element is often done manually,  

using arcane low-level, vendor-specific “languages”



interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

	redistribute	bgp	700	subnets

A single mistyped line is enough  

to bring down the entire network

Anything else than 700 creates blackholes



How can we program network-wide 

 forwarding state in existing networks?
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The forwarding state computed by a router 

depends on two inputs
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!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	

The router configuration specifies 

how the router compute its state
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“I can reach 1.0.0.0/24”

The routing messages sent 

by neighboring devices



Given a forwarding state we want to program, 

we therefore have two ways to provision it



way 1

way 2

Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesize



Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesizeoutput

inputs

functions



Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”



Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

[SIGCOMM’15]

Joint work with:  
Stefano Vissicchio, Olivier Tilmans and Jennifer Rexford



Fibbing



Fibbing
= lying



to control router’s forwarding table

Fibbing



lying made useful

Fibbing1

Expressivity
any path, anywhere

2

Scalability
1 lie is better than 2

3

Central Control Over Distributed Routing
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Fibbing1

Expressivity
any path, anywhere

Scalability
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Central Control Over Distributed Routing



Forwarding 

Paths

Routing 
Messages

MPLS

OSPF

BGP

A router implements a function  

from routing messages to forwarding paths

IP router

functioninput output



The forwarding paths are known,  

provided by the operators or by the controller

Forwarding 

Paths

Known

Routing 
Messages

MPLS

OSPF

BGP

functioninput output



input output

Known

The function is known, from the protocols’ 

specification & the configuration

Forwarding 

Paths

Routing 
Messages

MPLS

OSPF

BGP

function



Inverse

Given a path and a function, our framework computes 

corresponding routing messages by inverting the function

Forwarding 

Paths

Routing 
Messages

MPLS

OSPF

BGP

functioninput output



IGP

BGP

Router Input

Network graph

Routing paths

Family

Dijkstra

Decision process

Algorithm/ 

Function

Link-State

Path-Vector

The type of input to be computed depends 

on the routing protocol

Protocol



IGP

BGP

Router Input

Network graph

Routing paths

Family

Dijkstra

Decision process

Algorithm/ 

Function

Link-State

Path-Vector

We focus on routers running link-state protocols 

that take the network graph as input and run Dijkstra

Protocol
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Consider this network where a source  

sends traffic to 2 destinations
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As congestion appears, the operator wants  

to shift away one flow from (C,D)

D



impossible to achieve by  
reweighing the links

Moving only one flow is impossible though 

as both destinations are connected to D

desired
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Fibbing  
 controller

routing 
session
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Let’s lie to the router, by injecting  

fake nodes, links and destinations
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Fibbing  
 controller

routing 
session
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Let’s lie to the router, by injecting  

fake nodes, links and destinations

10

D

Fibbing  
 controller

A

C

Lie

15

11



3

1

1

A B

C

Lies are propagated network-wide 

by the protocol
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Fibbing  
 controller
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After the injection, this is the topology seen 

by all routers, on which they compute Dijkstra



Fibbing  
 controller
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to reach the blue destination…
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Fibbing  
 controller
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As the virtual node does not really exist, 

actual traffic is physically sent to A
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Fibbing 
workflow



+

network 
graph

path 
reqs.

Fibbing starts from the operators requirements 

and a up-to-date representation of the network



Syntax of Fibbing’s path requirements language

Operators requirements are expressed 

in a high-level language



Compilation

+

network 
graph

path 
reqs.

forwarding 
DAGs

Out of these, 

the compilation stage produces DAGs



+

augmented 
graph

Augmentation

forwarding 
DAGs

network 
graph

path 
reqs.

The augmentation stage augments the network graph 

with lies to implement each DAG



+

augmented 
graph

reduced  
graph

Optimization

forwarding 
DAGs

network 
graph

path 
reqs.

The optimization stage reduces 

the amount of lies necessary



+

reduced  
graph

running 
network

Injection

augmented 
graph

forwarding 
DAGs

network 
graph

path 
reqs.

The injection stage injects 

the lies in the production network
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Fibbing is powerful



Theorem

Fibbing is powerful

Fibbing can program 

any set of non-contradictory paths



Theorem

Fibbing is powerful

Fibbing can program 

any set of non-contradictory paths



Theorem

Fibbing is powerful

any path is loop-free

paths are consistent

(e.g. [s1, a, b, d] and

[s2, b, a, d] are inconsistent)

(e.g., [s1, a, b, a, d] is not possible)

Fibbing can program 

any set of non-contradictory paths
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Fibbing can load-balance traffic 

on multiple paths
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With such demands and forwarding, 

the lower path is congested (1.25)
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Congestion can be alleviated by splitting 

the orange flow into two equal parts (.25)
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This is impossible to achieve 

using a link-state protocol
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This is easily achievable with Fibbing
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One lie is introduced, 

announcing the orange destination
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Now E has two equal cost paths (7) to reach 

only the orange destination and use them both

E
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Scalability



space

# of lies

time

to compute lies

Scalability
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Scalability



Computing virtual topologies is easy: 

polynomial in the number of requirements
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Computing virtual topologies is easy: 

polynomial in the number of requirements



initial

A

B

C

3
1

3

virtual

?

Computing virtual topologies is easy: 

polynomial in the number of requirements
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For each router r whose next-hop  

for a destination d changes to j:



For each router r whose next-hop  

for a destination d changes to j:

Let w be the current path weight between r and d 

Create one virtual node v advertising d  
with a weight x < w 

Connects it to r and j



Create one virtual node v advertising d  
with a weight x < w 



Create one virtual node v advertising d  
with a weight x < w 

always possible 

by reweighting the initial graph
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Computing virtual topologies is easy: 

polynomial in the number of requirements
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Computing virtual topologies is easy: 
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The resulting topology can be huge 

and each router needs to run Dijkstra on it

Dijkstra’s algorithm 

complexity

O( |E| + |V| log |V| )

#nodes #links
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Lots of lies are not required, 

some of them are redundant

Good news



Let’s us consider  

a simple example
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original shortest-path 

“down and to the right”
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desired shortest-path 

“up and to the right”
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Our naive algorithm would 

create 5 lies—one per router
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A single lie is sufficient (and necessary)



We can minimize the topology size 

using an Integer Linear Program



time
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Integer Linear 
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optimalspace 
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While efficient, 

an ILP is inherently slow



Computation time matters  

in case of network failures
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A loop is created as C starts to use A 

which still forwards according to the lie
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The solution is to remove the lie
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The solution is to remove the lie



Upon failures, the network topology 

has to be recomputed, fast
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Merger iteratively tries to merge lies 

produced by the Naive algorithm
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Let’s compare the performance  

of Naive and Merger
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Naive computes entire virtual topologies in ms
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but still, sub-second
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We implemented a fully-fledged Fibbing 

prototype and tested it against real routers



We implemented a fully-fledged Fibbing 

prototype and tested it against real routers

How many lies can a router sustain?

How long does it take to process a lie?

2 measurements
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DRAM is cheap

Existing routers can easily sustain  

Fibbing-induced load, even with huge topologies



Because it is entirely distributed, 
programming forwarding entries is fast
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Fibbing realizes some of the SDN promises  

today, on an existing network

Facilitate SDN deployment

SDN controller can program routers and SDN switches

Simplify controller implementation

most of the heavy work is still done by the routers

Maintain operators’ mental model

good old protocols running, easier troubleshooting



http://fibbing.net

Check out our webpage

http://fibbing.net




Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

current focus

under submission



Works with a single protocol family

Dijkstra-based shortest-path routing 

Can lead to loads of messages

if the configuration is not adapted

Suffers from reliability issues

need to remove the lies upon failures

Fibbing is limited by the configurations 

running on the routers



!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	

router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	

Network specification (N )

Physical topology (φN)

High-level requirements (φR)

SyNET

!	
!	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Inputs Outputs



Network specification (N )

Physical topology (φN)

High-level requirements (φR)

Inputs



A set of Datalog rules that 

formalize how routers build 

their forwarding state

Fwd(Net,	Node,	Next)	:-	
		Route(Net,	Node,	Next,	Proto),	
		SetAD(Protocol,	Node,	Cost)	
		minAD(Net,	Node,	Cost)

Network specification (N )

Physical topology (φN)

High-level requirements (φR)

Inputs



A set of constraints over the 

input predicates of the Datalog 

program

Network specification (N )

Physical topology (φN)

High-level requirements (φR)

Inputs



A set of constraints over the 

output predicates of the Datalog 

program

“Traffic from R1 to R5  

 should flow via R2 and R3”

Network specification (N )

Physical topology (φN)

High-level requirements (φR)

Inputs



!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	

router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	

Network specification (N )

Physical topology (φN)

High-level requirements (φR)

SyNET

!	
!	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Inputs Outputs



Given N,φN, φR

SyNet generates a Datalog input I such that the 

problem

topology φN and routing φR constraints are satisfied 

for the given network specification N



Given N,φN, φR

SyNet generates a Datalog input I such that the 

this is undecidable (in general)challenge

problem

topology φN and routing φR constraints are satisfied 

for the given network specification N



Given N,φN, φR

SyNet generates a Datalog input I such that the 

this is undecidable (in general)challenge

problem

key ideas

“scale” using domain-specific heuristics

convert into a satisfiability question (on SMT constraints)

make the problem finite, use divide-and-conquer

topology φN and routing φR constraints are satisfied 

for the given network specification N



# protocols

# routers

static

static, OSPF

static, OSPF, BGP

4 9 16

SyNET can generate configurations 

for (small) networks



# protocols
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# protocols

# routers

static

static, OSPF

static, OSPF, BGP

4 9 16

1.8s

4.2s

13.8s

18.2s

37.0s

189.4s

116.1s

197.0s

577.4s

SyNET can generate configurations 

for (small) networks (new version goes to 81 routers)



synet.ethz.ch

Check out our webpage

http://synet.ethz.ch


Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”



Raw network programmability is only the beginning, 

what about configuration updates?

[SIGCOMM’11, INFOCOM’12, TON’12, TON’13, INFOCOM’13, TON’17]



Raw network programmability is only the beginning, 

what about network visibility?

[Hotnets’16]



Monitor

Analyze Plan

Execute

Adaptative 

Networked System

Network controller

control  

algorithms

programmabilityvisibility
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