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ABSTRACT

The Internet routing system faces serious scalability challenges,
due to the growing number of IP prefixes it needs to propagate
throughout the network. For example, the Internet suffered signifi-
cant outages in August 2014 when the number of globally routable
prefixes went past 512K, the default size of the forwarding tables
in many older routers. Although IP prefixes are assigned hierar-
chically, and roughly align with geographic regions, today’s Bor-
der Gateway Protocol (BGP) and operational practices do not ex-
ploit opportunities to aggregate routes. We present a distributed
route-aggregation technique (called DRAGON) where nodes ana-
lyze BGP routes across different prefixes to determine which of
them can be filtered while respecting the routing policies for for-
warding data-packets. DRAGON works with BGP, can be deployed
incrementally, and offers incentives for ASs to upgrade their router
software. We present a theoretical model of route-aggregation, and
the design and analysis of DRAGON. Our experiments with re-
alistic assignments of IP prefixes, network topologies, and rout-
ing policies show that DRAGON reduces the number of prefixes
in each AS by about 80% and significantly curtails the number of
routes exchanged during transient periods of convergence.
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1. INTRODUCTION

Ideally, a global routing system should scale by having each
node maintain detailed information about nearby destinations and
only coarse-grained information about far-away destinations [18,
34, 19]. Such a scalable system would be possible under careful,
centralized planning of the network topology, address assignment,
and route computation. However, the Internet is anything but cen-
tralized, and its growth has been anything but orderly. Each Au-
tonomous System (AS) makes its own decisions about where to
connect, how to acquire address space, and what routes to select
and make available to others. Increasingly, even ASs at the perime-
ter of the Internet are multi-homed, making it necessary to propa-
gate their routing information beyond their providers. As a result,
more than half a million IP prefixes are distributed by the global
routing system [1].

The growing number of globally routable IP prefixes has serious
consequences for the Internet. The number of prefixes determines
the size of forwarding-tables (or, Forwarding Information Base, or
FIB) stored in expensive high-speed memory on the routers, as well
as that of routing-tables (or, Routing Information Base, or RIB).
Many older routers devote a default size of 512K entries to the IPv4
forwarding table, which lead to the Internet outages of August 12,
2014, when the number of prefixes crossed this threshold [10, 22].
The number of prefixes also affects the message overhead and con-
vergence time of the Border Gateway Protocol (BGP), and the time
required to bring up a single BGP session [15, 37]. BGP’s scalabil-
ity challenges also hinder the deployment of security enhancements
like S-BGP, since the substantial computational overhead for sign-
ing and verifying BGP routes grows with the number of prefixes.

Fortunately, the underlying structure of the global routing sys-
tem makes better route aggregation possible. The assignment of
IP prefixes is mostly aligned with the AS-level topology and busi-
ness relationships, since blocks of IP addresses are allocated hierar-
chically by Regional Internet Registries (RIRs) to Internet Service
Providers (ISPs) who, in turn, assign sub-blocks to their customers.
Some ASs acquire Provider-Independent (PI) prefixes directly from
the RIRs. Nonetheless, these prefixes still align roughly with geo-
graphic regions. Likewise, despite the prevalence of multi-homing,
most ASs connect to multiple providers in the same geographic
area, leaving potential for far-away ASs to route based on coarser-
grained routing information.

Existing routing protocol implementations and operational prac-
tices do not exploit these opportunities for route aggregation. Ac-
cording to best current practices, an ISP configures its routers to
filter BGP routes from single-homed customers with IP addresses



allocated out of the ISP’s address space, but not from customers
who are multi-homed or have PI addresses. The reason is simple:
network operators cannot reason about how more aggressive filters
would affect how other parts of the Internet reach their customers.
In the face of uncertainty, ISPs are understandably conservative in
applying route filters. Worse yet, some ISPs do not filter at all, out
of ignorance, sloppy operational practices, or legitimate concerns
that a previously single-homed customer might later become multi-
homed.

In this paper, we introduce DRAGON (Distributed Route Ag-
gregation on the Global Network), a route-aggregation solution for
inter-domain routing. DRAGON operates with today’s BGP proto-
col and any routing policies that ensure correct operation of BGP.
We show that by comparing routes for different prefixes, an AS
can determine which prefixes can be filtered locally without wors-
ening the type of route used to forward data-packets. DRAGON
can be deployed incrementally and has built-in incentives for ASs
to participate. Our experiments with realistic AS-level topologies,
IP prefix assignments, and routing policies show that DRAGON
dispenses with about 80% of the IP prefixes in each AS.

Inter-domain routing policies are neither arbitrary nor random.
They reflect business goals and are constrained by BGP’s config-
uration mechanisms. Seen in this light, it is not surprising that
many routing policies end-up satisfying properties which leave a
distinctive mark on the global routing system. One such property is
isotonicity [8, 32], enjoyed by the Gao-Rexford (GR) routing poli-
cies [13] among others [31, 23]. In loose terms, isotonicity means
that if an AS prefers one route over another, a neighbor AS does
not have the opposite preference after its local processing of the
two routes. We show that, in the face of isotone routing policies,
DRAGON attains an optimal aggregated state that preserves the
global routes traversed by data-packets on their way to the destina-
tions.

The fundamentals of DRAGON are valid for any prefix-based
routing system substantiated on a routing vector-protocol. We honor
that generality in the way we present DRAGON even if our ex-
amples and experiments pertain to inter-domain routing. The pa-
per has three main parts: the design of DRAGON, illustrated with
examples, Section 3; the theoretical justification for DRAGON,
Section 4; and experiments quantifying the scalability benefits of
DRAGON, Section 5. The next section establishes the routing
model. There is also a section on related work, Section 6, and a
concluding section, Section 7.

2. ROUTING AND FORWARDING MODEL

A network is composed of nodes joined by links. Addresses are
strings of bits of fixed length. A prefix is a string of bits of length
shorter than that of the addresses, representing all the addresses
whose first bits coincide with those of the prefix. Prefixes are as-
signed to nodes and made known to all other nodes in the network
through a routing vector-protocol, in accordance with the routing
policies configured at the various nodes. In inter-domain routing,
nodes are ASs, prefixes are IP prefixes, the routing vector-protocol
is BGP, and there is a two-way link between two ASs if at least two
border routers, one on each AS, established a BGP-session between
them.

A route is an association between a prefix and an attribute.! At-
tributes are totally ordered by preference. A route pertaining to pre-
fix p is called a p-route. A standard vector-protocol instantiates a
distinct computation process for every prefix. The node to which p

'Our use of the term “attribute” is generic and not meant to single
out the parameters of BGP, such as LOCAL-PREF and AS-PATH.

has been assigned is the origin of p. This node attaches an attribute
to p thus forming a p-route that it announces to its neighbors. Each
node stores in its routing-table, for each one of its neighbors, a can-
didate p-route that extends the last of the p-routes announced by
the neighbor that was received by the node. The node elects the
candidate p-route with the most preferred attribute and, in turn, an-
nounces the elected p-route to its neighbors. Every time a node
elects a p-route, it makes an entry in its forwarding-table associat-
ing p to the forwarding neighbors for p, those being the neighbor
nodes for which the candidate p-route coincides with the elected p-
route. Allowing for multi-path routing, a prefix may be associated
with more than one forwarding neighbor. Routing policies specify
the relative preference among attributes and how the attribute of an
elected route at one node is extended to the attribute of a candidate
route at a neighbor node.

The prototypical inter-domain routing policies are the Gao-Rexford
(GR) routing policies [13], which postulate that neighbor nodes es-
tablish either a customer-provider or a peer-peer relationship. The
policies are supported on just the three attributes “learned from a
customer,” “learned from a peer,” and “learned from a provider.”
Following standard terminology, we use the term “customer route”
as shorthand for “route with attribute ‘learned from customer’,” and
similarly for the terms “peer route” and “provider route,” and talk
about the preference among routes signifying the preference among
their attributes. A customer route is preferred to a peer route which
is preferred to a provider route.” Customer routes are exported to
all neighbors, all routes are exported to customers, and these are
the only exportations allowed. A route originated by a node can be
assumed to have attribute “learned from a customer,” since it is sub-
jected to the same treatment as if it were learned from a customer,
namely, the route is exported to all of the node’s neighbors.

A vector-protocol is correct in a network if it terminates in a
stable state that guides data-packets to their destinations. Refer-
ence [32] gives a condition on the cycles of a network that guaran-
tees correctness. In the case of the GR routing policies, that condi-
tion stipulates the absence of cycles where each node is a customer
of the next around the cycle.

Figure 1 shows a network operating according to the GR rout-
ing policies. Solid lines join a provider and a customer, with the
provider drawn higher than the customer, and a dashed line joins
two peers. For instance, u2 is a provider of both u3 and u4, and a
peer of ui. Node ug is multi-homed to two providers, us and wu4.
Prefix p was assigned to node w4 which originates a p-route that it
exports to all its neighbors. Once the vector-protocol terminates,
uz elects a customer p-route, learned from w4, which becomes uz’s
forwarding neighbor for p; u; elects a peer p-route, learned from
u2; and us elects a provider p-route, learned both from w; and wus.

A prefix q is more specific than a prefix p if it is longer than p and
its first bits coincide with those of p. Delegation of prefixes from
providers to customers combined with operational practices, such
as those related to multi-homing and traffic engineering, cause pre-
fixes at different levels of specificity to be propagated throughout
the network and maintained in the routing- and forwarding-tables
of nodes. The longest prefix match rule [12] prescribes that data-
packets are forwarded at a node according to the elected route of the
most specific of the prefixes that contains the destination address of
the data-packet. In Figure 1, prefix ¢, assigned to ue, is more spe-
cific than prefix p. Node us elects a customer g-route, learned from
ue, and a provider p-route, learned from wus. Data-packets arriving

%Peer routes do not have to be preferred to provider routes [13]. We
make this extra assumption because it seems to be valid in practice
and it simplifies the exposition.
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Figure 1: Providers are drawn above customers and joined with
solid lines. Peers are joined with dashed lines. Node wg is multi-
homed to uz and u4. Node u4 is assigned p and delegates ¢ to its
customer ug, with ¢ more specific than p. Left. Standard stable
state. Checks mark nodes that satisfy the condition for filtering q.
Right. Stable state after all nodes execute code CR in whatever
order, with light-shaded nodes forgoing q.

at ug with destination in g are forwarded to ug, whereas those ar-
riving with destination in p but not in ¢ are forwarded to us.

3. MECHANISMS OF DRAGON

DRAGON relies on standard routing messages of a vector-proto-
col and augments local routing decisions with filtering of prefixes
and generation of aggregation prefixes. Section 3.1 presents ba-
sic filtering code for DRAGON and Section 3.2 presents a rule for
originating routes that ensures that the filtering code does not cause
black holes. Section 3.3 introduces a property of routing policies
known as isotonicity and shows that, in their presence, DRAGON
attains optimally filtered routing states. Section 3.4 deals with par-
tial deployment. Section 3.5 discusses alternative filtering codes.
Section 3.6 concerns multiple levels of prefixes and Section 3.7
presents aggregation prefixes. Section 3.9 shows how DRAGON
accommodates prefix de-aggregation for the purposes of traffic en-
gineering. Last, Section 3.8 discusses the reaction of DRAGON to
network events, such as link failures.

3.1 Filtering code

The goal of DRAGON is for many nodes to dispense with routes
pertaining to more specific prefixes with little or no change in the
properties of paths traversed by data-packets. Towards this goal,
some nodes filter some prefixes. Filtering of a prefix means that
no entry for the prefix is installed in the forwarding-table of the
node and the prefix is not announced to neighbor nodes. Routes
pertaining to the prefix are still kept in the routing-table of the node
for a prompt reaction to network events (Section 3.8).

Let ¢ be more specific than p. We investigate the following code
to filter g, to be executed autonomously at every node.

Code CR: If the node is not the origin of p and the attribute of the
elected g-route equals or is less preferred than the attribute of
the elected p-route, then filter g. Otherwise, do not filter q.

This code is intuitively reasonable as it maintains or improves the
attribute of the route according to which data-packets are forwarded
at a node. Certainly, the origin of p should not filter g-routes. Oth-
erwise, data-packets arriving there with destination in ¢ would have
nowhere to go and would have to be dropped. For a node other than
the origin of p, if the attribute of the elected g-route equals that of
the elected p-route, then the node filters g. On filtering, the node
saves on forwarding state while it still forwards data-packets with
destination in g according to an elected route—that for p—whose

attribute is the same as that of the elected g-route without filtering.
Last, if the attribute of the elected g-route is less preferred than
the attribute of the elected p-route, then all the more reason for the
node to filter ¢q. On filtering, the node saves on forwarding state and
improves the attribute of the route according to which it forwards
data-packets with destination in q.

Throughout the paper, we will study the global effect of local
code CR. For now, we exemplify that effect with Figure 1 assum-
ing the GR routing policies. Node ug acquired its address space
from its provider u4. The acquired address space is represented
by prefix ¢ which is more specific than prefix p. Despite this ac-
quisition, ue wants to send and receive data-packets to and from
both providers u4 and us. Thus, both p and q are propagated by the
vector-protocol throughout the network. The stable state is depicted
on the left-hand side of the figure and described next alongside the
possibility of filtering g upon execution of code CR.

e Node uy4 is the origin of p. Thus, w4 cannot filter q.

e Node ug, which is the origin of ¢, elects a customer g-route
(originated by itself) and a provider p-route. Thus, ug cannot
filter g-routes.

e Node us elects a customer g-route, learned from ug, and a
provider p-route, learned from wo. Thus, it cannot filter g-
routes.

e Node us elects both a customer g-route, learned from u3 and
u4, and a customer p-route, learned from u4. Thus, it can
filter g-routes.

e Node u; elects both a peer g-route and a peer p-route, both
routes learned from wu2. Thus, it can filter g-routes.

e Node us elects both a provider g-route and provider p-route,
both routes learned from u; and ws. Thus, it can filter g-
routes.

Suppose that u2 executes CR, thereby filtering q. Despite the
absence of a g-route, us still forwards data-packets with destination
in g according to a customer route, that elected for p. Because uz
filters g, u1 no longer receives a g-route from w2 and, hence, does
not elect any g-route. It forwards data-packets with destination in
q according to the elected p-route which was also learned from us.
Since u1 does not elect a g-route, it exports none to its customer us.
Node us still elects a provider g-route learned from ws. In this state,
suppose that us executes CR. It, too, filters g and starts forwarding
data-packets with destination in g according to the elected provider
p-route, learned from w3 and w1 . In summary, if u2 then us execute
CR, then we arrive at the routing state depicted in the right-hand
side of Figure 1 and commented upon next.

e Nodes u2 and us filter ¢ while u; is oblivious of q. We say
that a node forgoes q if either it filters g or is oblivious of
g. In real topologies, most nodes will forgo g. Of these, a
few will filter ¢, while the majority will be oblivious of q.
Routing state pertaining to ¢ only needs to be kept in some
small vicinity of the node originating q.

e Data-packets are delivered to the destinations, there being no
route oscillations, forwarding loops, or black holes. When
this happens, we say that DRAGON is correct (Section 3.2).

e Data-packets are forwarded at each node according to an
elected route whose attribute equals that of the elected route
used to forward them when there was no filtering. Such a
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Figure 2: Prefix g is more specific than p. Node u; originates g,
and ug originates p by sending a p-route to all its neighbors. Node
ug executes CR, in the process creating a black hole at u3. Arrows
indicate the expedition of data-packets with destination in q.

desirable global state is called route consistent. A route-
consistent state is optimal if the set of nodes forgoing ¢ is
maximal (Section 3.3). The routing state depicted in the
right-hand side of Figure 1 is optimal and can be arrived at
by executing CR. once at each node in whatever order.

3.2 Announcement rule and correctness

Through code CR, DRAGON subordinates the computation of
g-routes to the computation of p-routes. Therefore, even if the
vector-protocol is correct for p and ¢, taken individually as two
unrelated prefixes, it is legitimate to ask whether DRAGON is cor-
rect, always delivering data-packets to their destinations. The main
concern is that filtering of ¢ by some nodes may create black holes
for data-packets with destination in q. In Section 4.2, we prove that
the following rule for originating prefixes guarantees correctness of
DRAGON.

Rule RA: The origin of p announces p with a route whose at-
tribute is equal or less preferred than the attribute of the elected
g-route.

The necessity of rule RA can be appreciated with the example
of Figure 2. Node u is the origin of ¢ and u3—which a customer
of a customer of u;—is the origin of p. Node ug3 elects a provider
g-route. Suppose that it originates p with a customer route, thus
violating rule RA: the attribute of the p-route with which u3 orig-
inates p (“learned from a customer”) is preferred to the attribute
of the elected g-route (“learned from a provider”). Node us elects
a provider g-route and a customer p-route. On executing CR, u2
filters g. As a consequence, no g-route arrives at uz and u4. Data-
packets arriving at uo and u4 with destination in g are forwarded
to ug by the elected p-route to be dropped there. Node u3 becomes
a black hole for g. In order to satisfy rule RA, us can originate p
only with a provider route, meaning that it can export p-routes only
to its customers; in this case, to node u4. If u3 does export a p-route
to u4, then ug4 elects both a provider g-route and a provider p-route.
Node u4 may filter g-routes that data-packets with destination in g
will be delivered to u1.

It must be noted that the assignment of prefixes in Figure 2 is
unlikely to be found in the Internet where blocks of IP addresses
are delegated from providers to customers rather than the other way
round.

3.3 Isotonicity and optimal route-consistency

Routing policies are isotone [8, 32] whenever the relative pref-
erence among attributes of elected routes is respected among the
attributes of the candidate routes derived from them. Let v and v

be two neighbor nodes and « and /3 be any two attributes such that
« is preferred to 5. Suppose that elected routes with attributes a
and /3 at v are extended to candidate routes with attributes o’ and
B’ at u, respectively. The combined routing policies of u and v are
isotone if o equals B’ or o is preferred to 3’.

The GR routing policies are isotone. For instance, suppose that
v is a customer of v. All of a customer route, a peer route, and a
provider route at v are exported by v to u, and all become provider
routes at u. Thus, isotonicity holds. Suppose, instead, that u is a
provider of v. A customer route is preferred to both a peer route
and a provider route at v. The customer route is exported by v to
u where it becomes a customer route too, whereas the peer route
and the provider route are not exported by v to u. Clearly, the cus-
tomer route at u is preferred to no route. Isotonicity holds as well.
A similar argument can be made if u is a peer of v. Many other
practical routing policies are isotone. For example, the next-hop
routing policies proposed in [31] for inter-domain routing gener-
alize the GR routing policies and are isotone as well. So are the
routing policies that incorporate siblings in the landscape of Inter-
net business relationships [23].

A global routing state attained by DRAGON is route consis-
tent if it is stable and always forwards data-packets according to
an elected route whose attribute is the same as that of the elected
route used to forward them without DRAGON. A route-consistent
routing state is optimal if the set of nodes that forgoes ¢ is max-
imal. Ideally, DRAGON would lead to optimal route-consistent
states and this is exactly what happens if routing policies are iso-
tone and all nodes execute code CR once in whatever order. A
proof of this result is given in Section 4.3. The intuition is the fol-
lowing. With isotonicity, if the attribute of the elected g-route is the
same or less preferred than the attribute of the elected p-route at a
node v—as in the premise of code CR—then, at a neighbor u of
v, the attribute of the g-route learned from v is also the same or less
preferred than the attribute of the p-route learned from v. There-
fore, the filtering of ¢ at v is consistent with the filtering decision
that would be made at u based on routes learned from v.

If routing policies are not isotone, then code CR may not con-
duce to route-consistent states. Consider the network of Figure 3
where the GR routing policies are used with two important excep-
tions.

e Node us prefers routes learned from provider us to routes
learned from provider ;.

e Node w3 exports provider routes to its customer us, but it
does not export customer routes to us. Thus, the combined
routing policies of u3 and us are not isotone. A customer
route is preferred to a provider route at uz, but the former is
not exported to us whereas the latter is.

Node ug elects a customer g-route and a provider p-route. It ex-
ports a p-route to us, but it does not export a g-route to us. Thus,
us elects a p-route learned from its most preferred provider, us,
but a g-route learned from its least preferred provider, ui. The
longest prefix match rule directs data-packets arriving at us with
destination in g exclusively to us’s least preferred provider, u;.
Suppose that u; executes CR.. In this case, us is oblivious of q.
It starts forwarding data-packets with destination in ¢ according to
the elected p-route which is the one learned from its most preferred
provider, us. DRAGON changed the attribute of the route accord-
ing to which data-packets with destination in ¢ are forwarded at
us, from “learned from least preferred provider” to “learned from
most preferred provider.” It can be argued that the preference of the
route according to which us forwards data-packets with destination
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Figure 3: The thicker line means that us prefers provider us to
provider u;. Node u3z exports only provider routes to us. Left.
Standard stable state. Right. State after all nodes execute CR.. Ar-
rows indicate the expedition of data-packets at us with destination
in q. Route consistency is not satisfied.

in g has improved. That is one more counter-intuitive behavior of
vector-protocols when routing policies are not isotone [36]. How-
ever, the point we are making here is that DRAGON did not lead to
a route-consistent state (maybe us3 agreed with us to forward us’s
data-packets further except for those with destination in g).

The following comments summarize the significance of isotonic-
ity for DRAGON.

e The incentive for an individual node to deploy DRAGON is
embodied in code CR and does not depend on isotonicity.

e The correctness of DRAGON derives from the correctness
of a standard vector-protocol and rule R A, and does not de-
pend on isotonicity.

e [sotonicity guarantees an optimal route-consistent state if all
nodes adopt DRAGON, by executing code CR, but it does
say if that state is efficient, in the sense of having many nodes
forgoing q. For example, the routing policies that substanti-
ate shortest-path routing are isotone, while it is well-known
that we cannot compact routing and forwarding state without
stretching distances, in general [19]. In inter-domain routing,
the efficiency of DRAGON stems from the hierarchy estab-
lished by the provider-customer relationships and the align-
ment, even if imperfect, between this hierarchy and prefix
assignment (Section 5).

e [sotonicity guarantees that there is an order for adoption of

DRAGON among all nodes that is route-consistent at all stages.

This is shown in the next section.

3.4 Partial deployment

DRAGON can be deployed progressively, one node at a time.
With isotone routing policies, it is always possible to sequence the
adoption of DRAGON so that route-consistency is ensured at all
stages of deployment. In the particular case of the GR routing poli-
cies, all sequences of adoptions obeying the following general con-
dition ensure route-consistency.

Condition PD: First, execute CR at nodes that elect either a peer
or a provider g-route, in whatever order. Next, execute CR
at nodes that elect a customer g-route top-down in the provider-
customer hierarchy, that is, only execute CR at a node that
elects a customer g-route after the code has been executed at
its providers.

If condition PD is violated, then there may exist stages of de-
ployment that are not route-consistent. However, these stages entail

Figure 4: Arrows indicate the expedition of data-packets with des-
tination in g. Left. Initial, standard stable state. Deployment of
DRAGON first by us, then by w2, and last by u4 guarantees route-
consistent states at all stages. Right. Filtering of ¢ by w4 alone
decreases the preference of the elected g-routes at u2 and us. This
decrease in preference reinforces u2’s and u3’s readiness to filter g.

incentives for nodes to adopt DRAGON. Pursuing these incentives,
nodes settle quickly in route-consistent states.

We illustrate with Figure 4. Node wus is the origin of p and wue is
the origin of q. Node w, is a provider of both us and ug. Node us is
a peer of both v and us. The left-hand side of the figure shows the
initial stage, where DRAGON is not deployed at all. At this stage,
only w2, us, and us4 will be able to filter ¢ on executing CR.. Node
u3 elects a peer p-route and a peer g-route, whereas u2 and u4 both
elect a customer p-route and a customer g-route. In order to satisfy
condition PD, w3 is first in adopting DRAGON, executing CR
and filtering g. On doing so, it continues to forward data-packets
with destination in g to its peer u2. Next, u2 must execute CR
before u4 because it is a provider of u4. On executing CR, u2
filters ¢ while still forwarding data-packets with destination in g to
its customer u4. Last, u4 executes CR, filters ¢, and forwards data-
packets with destination in g to us, the same as without DRAGON.
All intermediate stages of deployment are route-consistent.

Back to the initial stage, suppose that u4, rather than us, is first
in adopting DRAGON. The resulting state is depicted in the right-
hand side of Figure 4. Node u4 forwards data-packets with desti-
nation in q to us, as before, but it stops exporting a g-route to us.
As a consequence, us elects a peer g-route, learned from w;. It no
longer exports a g-route to u3 whose reaction is to elect a provider
g-route, learned as well from u;. The routing state after u4 alone
adopts DRAGON is not route-consistent. On the other hand, both
ug and uz now have strong incentives to deploy DRAGON because,
by doing so, they improve the attribute of the route used to forward
data-packets. On executing CR, u» forwards data-packets with
destination in ¢ to its customer w4 rather than to its peer ui; on
executing CR, ug forwards data-packets with destination in ¢ to
its peer us rather than to its provider ;. In addition, on executing
CR, both u2 and u3 save on forwarding state.

3.5 Alternative filtering codes

Preserving forwarding neighbors. Code CR may reduce the
multi-path potential of a vector-protocol. For example, in the right-
hand side of Figure 1, after all nodes execute CR, uz loses us3 as
a neighbor to which it can forward data-packets with destination in
q, since ug is a forwarding neighbor for g that is not a forwarding
neighbor for p. It is possible to tighten code CR so that it preserves
or improves, not only route attributes, but also the sets of forward-
ing neighbors. Reference [33] outlines such a code for the especial
case of the GR routing policies.

Notwithstanding, application of CR at the router-level, with
router-level attributes, provides a multi-path effect at the AS-level



which may be sufficient in practice. For example, suppose that
nodes in Figure 1 represent ASs containing several routers. On ex-
ecuting CR at the routers, it likely happens that u2’s border routers
connected to u3 do not filter ¢ whereas those connected to u4 do
filter it. At the AS-level, it is as if data-packets arriving at us with
destination in ¢ were forwarded to both u3 and u4.

Relaxing AS-paths. Attributes of BGP routes (our use of the
term “attributes”) can be seen as composed of two component-
attributes: those implemented with BGP’s parameter LOCAL-PREEF,
which we will call L-attributes in the remainder of this section;
and AS-paths, which exactly correspond to BGP’s parameter AS-
PATH. L-attributes typically reflect the business relationships be-
tween neighbor ASs and take precedence in route election, with the
lengths of AS-paths serving as tie-breakers among routes having
the same L-attributes.

For filtering, code CR requires the whole attribute of the elected
g-route to equal or be less preferred than the whole attribute of the
elected p-route. However, attempting to preserve or improve the
lengths of AS-paths does not lead to significant savings in routing
state, in general. On the other hand, since AS-paths only play a
secondary role to L-attributes in route election and, additionally,
they are not even good indicators of network performance [31], we
may specialize code CR . to allow for some slack in the lengths
of AS-paths. A node other than the origin of p will filter ¢ if and
only if: the L-attribute of the elected g-route is less preferred than
that of the elected p-route; or the L-attribute of the elected g-route
equals that of the elected p-route and the AS-path of the elected
g-route is not shorter than that of the elected p-route by more than
X links, where X > 0 becomes a parameter of the filtering strat-
egy. The limiting case of X = +o0o amounts to code CR applied
exclusively to L-attributes.

3.6 Multiple levels of prefixes

A very large number of prefixes at different levels of specificity
is announced in the network. We define the parent of a prefix ¢
in a set of prefixes as the most specific of the prefixes that are less
specific than g in the set. DRAGON operates by having every node
contrast each prefix ¢ against its parent prefix in the set of prefixes
learned from the vector-protocol, in the same way that g is con-
trasted against p in code CR.

We can impose that every node executes code CR. on the list
of prefixes it learns from the vector-protocol, from the least to the
most specific ones. However, the executions of code CR at dif-
ferent nodes are not correlated in time and may depend on route
dynamics outside the control of network operators. Thus, the par-
ent of a prefix may vary from node to node at any given time, and
throughout time. Despite the asynchrony, DRAGON remains cor-
rect for the same routing policies that make the vector-protocol cor-
rect. In addition, if routing policies are isotone, then DRAGON
leads to an optimal route-consistent state.

3.7 Aggregation prefixes

Provider-independent (PI) prefixes are those acquired by nodes
directly from registrars. These prefixes do not have a parent in the
routing system and, as it stands, cannot be filtered. DRAGON pro-
motes the generation of a few aggregation prefixes to allow filtering
of many of the PI prefixes. Each node determines autonomously
which aggregation prefixes it originates, if any. The specification
for an aggregation prefix requires it to be as short as possible with-
out introducing new address space and to be announced with an
attribute that respects rule RA. This specification can be realized
with a quick algorithm that traverses twice the binary tree of pre-
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Figure 5: Both u3 and u4 originate prefix 10. Both u; and u» filter
prefixes 100, 1010, and 1011.
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Figure 6: The announcement of 10 by w2 subsumes that by u;, and
allows u to filter prefixes 100, 1010, and 1011.

fixes that has the empty prefix for root and the prefixes without
parent for leaves, as they are known locally at a node.

DRAGON self-organizes when more than one node originates
the same aggregation prefix. We illustrate two distinct aspects of
this self-organization. In Figure 5, nodes t1, t2, and t3 were as-
signed PI prefixes 100, 1010, and 1011, respectively. Both us and
uy4 elect customer routes for each of these prefixes. Independently
of each other and possibly at different moments in time, both w3
and ug4 originate aggregation prefix 10. Then, the vector-protocol
anycasts to 10 with both u3 and u4 knowing how to further data-
packets with destination in 10. There is an advantage in having
both uz and u4 originate 10. This way, both w; and u2 can fil-
ter the PI prefixes. If, say, us alone originated 10, then u2 would
elect a peer 10-route, but customer routes for 100, 1010, and 1011.
Node u2 would not be able to filter any of the PI prefixes.

In Figure 6, nodes ¢1, t2, and t3 were again allocated PI pre-
fixes 100, 1010, and 1011, respectively. Suppose that u; originates
aggregation prefix 10 while w2 does not. Therefore, uz elects a
provider 10-route, learned from w1, but customer routes for all the
PI prefixes. Node u2 cannot filter any of the latter. However, it, too,
can originate 10. Suppose it does originate 10. As a consequence,
u1 learns a customer 10-route from w2, elects that route, and stops
originating 10. Because u; also elects a customer route for each of
the PI prefixes, it may filter them. Any data-packet arriving at 1
with destination in 10 is forwarded to uo which delivers it to the
appropriate customer.

3.8 Network dynamics

DRAGON reacts automatically to network events, such as link
failures or additions. We illustrate that reaction calling again upon
the network of Figure 1 and starting from the route-consistent state
depicted on its right-hand side. The failure of a link that does not
affect the election of a customer g-route at the origin of p, u4, is
handled solely by code CR. For instance, suppose that two-way
link {us, ug} fails. Consequently, the elected g-route at us changes
from customer to provider, the latter route learned from u2. Since
ug also elects a provider p-route, it now filters ¢ on executing CR..

Suppose, instead, that two-way link {u4,ue} fails. Node wus
no longer elects a customer g-route. Hence, it cannot announce p



with a customer route as such an action would violate rule RA.
Rather, u4 de-aggregates p into longer prefixes that can be an-
nounced with customer routes. For instance, suppose that p = 10
and ¢ = 10000. Node u4 withdraws p and announces the three pre-
fixes 10001, 1001, and 101, which together with the missing prefix
q = 10000 partition the address space of p. Node us elects cus-
tomer routes for 10001, 1001, and 101, learned from w4. Through
us, it also elects a customer 10000-route. Therefore, u2 no longer
filters g, but rather pieces together the prefixes 10001, 1001, 101,
and ¢ = 10000 to originate aggregation prefix p = 10. In global
terms, the failure of {wa4, us } moved the origin of p upwards in the
provider-customer hierarchy, from u4 to its provider u2. Node u1
elects a peer p-route and a peer g-route, filtering ¢ on executing
CR. Similarly, us elects a provider p-route and a provider g-route,
filtering ¢ on executing CR.

In practice, if u4 assigned ¢ to ug and two-way link {wa4, ue}
fails, then ua would likely wait some time for two-way link {u4, ue }
to be repaired before de-aggregating p.

3.9 Traffic engineering

Customers connected to multiple providers sometimes perform
in-bound traffic engineering by de-aggregating their assigned pre-

fixes and announcing different sub-prefixes to different providers [9].

DRAGON allows for route consistent filtering of the sub-prefixes.

We illustrate with Figure 7. Node w7 is a customer of both u4
and us. It was assigned prefix p. In order to balance its incom-
ing traffic between its two providers, u7 de-aggregates prefix p into
sub-prefixes p0 and pl. It announces p and p0O to u4, while it an-
nounces p and pl to us. All data-packets with destination in p0
arrive at ur via its provider w4, and all data-packets with desti-
nation in pl arrive at uy via its provider us. The left-hand side
of the figure shows the flow of data-packets with destination in p0.
Note that us forwards data-packets with destination in p0 to its own
providers u; and w2, although the block of addresses represented
by p0 belongs to its customer w7 (!). Node us could just thwart the
intention of its customer u~ by filtering pO-routes, so that all data-
packets arriving at us with destination in p0 would be forwarded
directly to wy.

Thus, we assume that the traffic engineering intention of ur is
respected by its providers. Specifically:

e If a provider of u7 elects both a pO-route and a p1-route, then
it announces p according to rule RA.

e If a provider of u7 learns a p-route from a neighbor other
than wy, then it refrains from electing the customer p-route
learned from wr.

Node u4 elects a customer pO-route and a provider p1-route. Hence,
in order to obey rule RA, w4 announces p with a provider route,
exporting a p-route only to its customers; in this case, to us. Node
ug elects both a provider pO-route and a provider p-route. Exe-
cuting CR on p0, us filters p0. The situation at us is analogous.
It originates a provider p-route that it exports to its customer us.
Node usg elects both a provider pO-route and a provider p-route.
Executing CR on p0, us filters pO0.

If nothing else were done, only ug and us would be able to filter
p0. However, note that u; elects both a customer pO-route and a
customer pl-route. Therefore, u; can originate aggregation prefix
p with a customer p-route, announcing p to all its neighbors. Sup-
pose it does so. Node u3z now elects both a provider pO-route and
a provider p-route. It filters p0 after executing CR on p0. Node
uz elects a peer pO-route and a peer p-route. It, too, filters p0 af-
ter executing CR on p0. Node us learns a p-route from w; and

Figure 7: Node w7 is a multi-homed to w4 and us. It is assigned
prefix p which it de-aggregates into prefixes pO and pl. Node w7
announces p and p0 to u4, and p and pl to us. Wiggled arrows
indicate prefix announcements and straight arrows indicate the ex-
pedition of data-packets with destination in p0. Left. Standard
stable state for pO. Right. Route consistent state for p0 with u
originating p and light-shaded nodes forgoing p0.

uz, thereby electing a provider p-route. If us now executes CR
on p0, it filters p0, because it elects both a provider pO-route and a
provider p-route. The resulting routing state for prefix p0 is shown
at the right-hand side of Figure 7. The routes used to forward data-
packets with destination in p0 are the same as without DRAGON.
Route-consistency is satisfied.

If two-way link {ua4,u7} fails, then pO is eliminated from the
network, u; no longer originates p, and the only p-route that us
learns is the one from wu7. Thus, us elects a customer p-route,
learned from w7, announcing p to all its neighbors. All data-packets
with destination in p0 are guided by elected p-routes, ending up in
w7 via us.

4. THEORY OF DRAGON

In Section 4.1, we briefly review the algebraic framework of [32]
which allows us to reason with generality about vector-protocols
and about DRAGON. Based on this framework, we sketch the proof
of correctness of DRAGON in Section 4.2, and the proof of opti-
mality of DRAGON under isotonicity in Section 4.3.

4.1 Correctness of vector-protocols

The set of attributes is denoted by X and their order by <. For
o, B € %, the inequality @ < [—equivalently, 8 > a—means
that « is preferred to 5. The especial attribute e denotes unreach-
ability, being the least preferred of all attributes. For simplicity,
we assumed that routing policies do not depend on prefixes. The
transformations of attributes as routes propagate in a network are
modeled by maps on X. A map L on ¥ such that L(e) = e is
called a label. Links point in the direction of traffic flow. Each
link ww is associated with a label L[uv] telling how the attribute
a of a route elected at v extends into the attribute L[uv](a) of a
candidate route at u. The label of a walk P = uptun_1 - - u1uo,
denoted by L[P], is obtained through composition of the labels of
its constituent links: L[P] = L{unun—1] -+ L{uiuo].

Cycle C' = upun—1 - - - ug is strictly absorbent if

Vao<e,....an_1<e Jo<icn @it1 < L{uit1us](as), (1

with subscripts interpreted modulus n. Intuitively, C' is strictly ab-
sorbent if whatever the attributes of routes learned by each node
externally to C at least one of the nodes prefers the attribute of that
route to the attribute of the route it learns from its neighbor around
C. This suggests that the propagation of routes around C' even-



tually subsides and that once a stable state is reached C' does not
contain a forwarding loop. Indeed, the following theorem is proven
in [32].

Theorem 1 If all cycles in a network are strictly absorbent, then a
vector-protocol is correct in that network.

We assume that all cycles in every network are strictly absorbent.
The origin of p is denoted by ¢”. It announces a p-route with an
attribute denoted by R*[t; p]. Let R[u; p] be the attribute of the p-
route elected at u in the stable state (R[u; p] = e if u does not elect
a p-route). Node t” elects the p-route it announced, R[t?;p] =
R*[t?; p], and every node u other than ¢¥ elects the candidate p-
route with the most preferred attribute. If v is a forwarding neigh-
bor of u for p, then R[u;p] = L[uv](R[v;p]); otherwise, if v is
a neighbor of u, but not a forwarding neighbor of u for p, then
Rlu;p] < L[uv](R[v;p]). A forwarding path for p is a path end-
ing at t? that joins every node, other than t?, to one of the node’s
forwarding neighbors for p.

4.2 Correctness of DRAGON

Given cycle C and two distinct nodes of the cycle, v and v, uCv
denotes the unique path in C' from w to v. The next lemma states an
easy, but useful, implication of strict-cycle-absorbency. The proof
is omitted.

Lemma 1 Suppose cycle C' is strictly absorbent. Let u and v be
two distinct nodes of C and o, < e and ., < e be two attributes.
Then, either cv, < L[uCv](aw) or ay < LvCu|(aw) (or both).

We consider two prefixes p and g such that ¢ is less specific
than p.

Theorem 2 If all cycles in a network are strictly absorbent, then
DRAGON is correct in that network whatever the set of nodes exe-
cuting CR.

PROOF. We divide the proof into three claims.

Claim 1: DRAGON terminates. The vector-protocol terminates
for prefix p, Theorem 1. Some nodes execute CR. which may lead
them to filter ¢. Filtering does not compromise termination for pre-
fix q.

Claim 2: DRAGON does not yield forwarding loops. The stable
states for p and ¢ do not contain forwarding loops, Theorem 1. A
data-packet with destination in ¢ may be forwarded from a node
that does not elect a g-route to one that does, but never back. Once
a data-packet reaches a node that elects a g-route, it is guided all
the way along a forwarding path for q.

Claim 3: DRAGON does not yield black holes. A black hole
could only exist at t”, and only if ¥ did not elect a g-route. We
will show that every node on a forwarding path for g starting at t?,
other than ¢? itself, elects a g-route whose attribute is preferred to
that of the elected p-route. Hence, even if the node executes CR, it
does not filter g. Rather, it keeps announcing g-routes according to
the rules of the vector-protocol, so that t¥ always elects a g-route.

In order to arrive at a contradiction, assume that there is a node
in a forwarding path P for g starting at ¢* such that the attribute of
the elected g-route equals or is less preferred than the attribute of
the elected p-route. Let u be the first such node along P. Hence,
by hypothesis, we have

R[u; q] = Rlu;p). )

Let @ be a forwarding path for p starting at u and let v be the first
node along @ that meets P. We distinguish two cases. If v = t?,

then, from rule RA, we obtain R*[v;p] = R[v;p] > Rlv;q].
Otherwise, if v # tP, then since w is the first node along P such
that R[u; q] > R|u;p], we must have R[v;q] < R[v;p]. In both
cases,

R[v; p] > R[v; q]. 3)

Path vPu is the sub-path of P running from v to v and uQu is
the sub-path of @ running from w to v. The union of vPu and
uQu is a cycle, denoted by uQuPu. Because P is a forwarding
path for g, we write R[v;q] = L{vPu](R[u;q]); because Q is a
forwarding path for p, we write R[u; p] = L[uQv](R][v; p]). With
oy = Rlu;q] and o, = R[v; p], Inequalities (2) and (3) become
oy = LuQu](aw) and a, = L{vPul](aw), respectively. From
Lemma 1, we conclude that uQu Pu is not strictly absorbent, con-
tradicting the premise of the theorem. Thus, the attribute of the
elected g-route is preferred to the attribute of the elected p-route at
any node along a forwarding path for ¢ starting at t*. [

4.3 Optimal route-consistency

A label L is isotone if o < f implies L(a) < L(B) for all
attributes o and . A link, or a walk, is isotone if its label is isotone.
A walk all links of which are isotone is itself isotone. Isotonicity
confers optimality to the attributes of routes elected at the various
nodes. The next theorem is proven in [32].

Theorem 3 If all links in a network are isotone, then the attribute
of an elected route at a node equals or is preferred to the attribute
of any route propagated to the node from its origin along a walk in
that network.

In symbols, the previous theorem states that, for all nodes u, all
prefixes p, and all walks P from w to t¥, we have

Rlu;p] < L[P|(R"[t"; p]). 4)

Theorem 4 Suppose that all links in a network are isotone. Then,
DRAGON attains the optimal route-consistency state once all nodes
execute CR. in whatever order.

PROOF. We divide the proof into four claims, the first two of
which assert properties of the stable state previous to the execution
of DRAGON.

Claim 1: At any node u, the attribute of the elected q-route is the
same or preferred to the attribute of the elected p-route.

In symbols, we need to show that Ru;q] =< R[u;p], for all
nodes u and prefixes p. Let P be a forwarding path for ¢ starting at
u; @ be a forwarding path for p starting at u; and 7" be a forwarding
path for ¢ starting at t”. Denote by Qt”T' the walk composed of
path @ followed by path T". From rule RA, we have

LIT|(R*[t*; q]) = R[t"; q] = R*[t"; p].

Applying label L[Q)] to the previous inequality yields, due to iso-
tonicity,

LIQI'T)(R"[t"; q]) < LIQI(R"[t";p]) = Rlu;p]. (5
Hence,
Rlu; q] < LIQt"T|(R™[t*; q])
= R[u; p].

(from Theorem. 3)
(from (5))

Claim 2: Let E be the set of nodes, not containing t*, for which
the attribute of the elected q-route equals that of the elected p-route.
If u does not belong to E neither does any of its forwarding neigh-
bors for q.



We prove the contrapositive statement. Let v be a forwarding
neighbor of v for ¢, R[u; q] = L{uv](R][v;q]), and assume that v
belongs to E, R[v; q] = R[v;p]. Thus,

R[u; p] = L{uv](R[v; p]) = L{uwv](R[v; q]) = Rlu; q].

From Claim 1, we know that R[u; q] < R[u;p]. Thus, R[u;q] =
RJu; p], meaning that u belongs to E as well.

Claim 3: Set E is the optimal set of nodes that can forgo q while
maintaining route-consistency.

Nodes in E, and only those, can forgo g while preserving the
attribute of the route according to which they forward data-packets
with destination in g. Moreover, from Claim 2, filtering of ¢ by
nodes in any subset of £ does not affect the elected g-routes of
nodes not in E.

Claim 4: Suppose that an arbitrary subset of nodes of F filter q
and let S be the subset of nodes of E that do not forgo q. Any node
u in S will filter q on executing CR.

A node that filters ¢ is a node that can be removed from the
network as far as the computation of elected g-routes for all other
nodes is concerned. Removal of nodes reduces the set of paths in
the network. Invoking Theorem 3, we conclude that the attribute of
the elected g-route at any node either remains the same or becomes
less preferred. Hence, the premise of CR remains valid at any
nodein S. [

S. EVALUATION

We evaluate the scalability benefits brought to inter-domain rout-
ing when all ASs deploy DRAGON. Section 5.1 describes the net-
work topologies, prefix assignments, and routing policies we used.
The savings in routing and forwarding state achieved by DRAGON
are presented in Section 5.2, and the impact on convergence is dis-
cussed in Section 5.3.

5.1 Methodology and datasets

We ran DRAGON on inferred Internet topologies provided by
UCLA [2] and lists of IP prefixes originated by each AS collected
by CAIDA [3]. In the inferred topologies, each link is labeled as
provider-to-customer, customer-to-provider, or peer-to-peer. Ac-
cordingly, we assumed the GR routing policies. We used data from
November 2012 and September 2013, but only consider the 2013
results in the following as the findings are almost identical in the
two cases.

Fixing inaccuracies in the datasets. We first fixed inaccuracies
usually found in the data [30]. Regarding the Internet topology, we
broke every customer-provider cycle and ensured that the topol-
ogy is policy-connected [33] —meaning that there is a valid path
from every AS to every other—by removing ASs that prevented
this from happening. From 46,455 ASs and 184,024 links, we
ended up with 39,193 ASs (keeping 84% of them) and 165,235
links (keeping 90% of them). Most of these ASs (84% of them)
are at the perimeter of the provider-customer hierarchy having no
customers. These ASs are called stubs. Regarding the prefixes, we
removed any prefixes originated by multiple ASs and those whose
parent prefix is not originated by a direct or indirect provider. From
491,936 prefixes, we ended up with 433,244 prefixes (keeping 88%
of them). The median number of prefixes originated by an AS is 2,
with a 95-th percentile of 33 prefixes and a 99-th percentile of 159
prefixes.

Accounting for missing peering links. Inferred Internet topolo-
gies typically underestimate the number of peering links [5]. In
order to compensate this distortion, we experimented introducing
peering links between ASs connected at common Internet Exchange
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Figure 8: CCDF of filtering efficiency. Around 80% of the ASs
reach the maximum filtering efficiencies of 50% (without aggrega-
tion prefixes, DRG def) and 79% (with aggregation prefixes, DRG
agqg). Inset. CCDF of filtering efficiency of non-stubs only, ex-
hibiting a similar behavior.

Points, following used approach in [24]. We found that the per-
formance of DRAGON was only marginally affected with median
values within less than 1% of the original ones. In hindsight, this
is reasonable. The performance of DRAGON mostly results from
the alignment between the provider-customer hierarchy and the as-
signment of prefixes, and, therefore, it is not significantly impacted
by peering links.

Introducing aggregation prefixes. Half of the prefixes in our
dataset are PI prefixes that do not have a parent prefix in the routing
system. In order to subject these prefixes to filtering, we introduced
around 45,000 aggregation prefixes subject to the conditions speci-
fied in Section 3.7, increasing the total number of prefixes by ~11%.
Among all ASs, 8% originate at least one aggregation prefix, with
a median value of 3 prefixes, a 95th (resp. 99th) percentile of 66
(resp. 306) prefixes.

5.2 Filtering efficiency

We define filtering efficiency as the normalized difference be-
tween the number of entries in the forwarding-table of an AS be-
fore and after DRAGON is deployed on all ASs.®> The results for
routing-tables mimic those for forwarding-tables and are not re-
ferred to explicitly. Without aggregation prefixes, the maximum
possible filtering efficiency is 50% as half of the prefixes do not
have a parent. With aggregation prefixes, the maximum filtering
efficiency rises to 79%.

Figure 8 plots the filtering efficiency according to whether or
not aggregation prefixes are introduced (DRG curves). Results are
presented as Complementary Cumulative Distribution Functions
(CCDFs). A point (z,y) of a curve means that y% of the ASs
have a filtering efficiency of more than 2%. The main plot depicts
the filtering efficiency for all ASs, whereas the inset focuses on
non-stubs.

DRAGON enables near-maximum filtering results for each AS.
We first consider the case without aggregation prefixes. Every AS
forgoes more than 47.5% of the prefixes. This is partially justified
by the fact that for a large number of prefixes having a parent (83%
of them), the prefix and its parent have the same origin AS [9, 4].

3Equivalently, it is the difference between the number of prefixes
forgone and the number of aggregation prefixes introduced divided
by the number prefixes in the original routing system.



Thus, these prefixes are immediately filtered by the neighbors of
those common ASs and become oblivious to the rest of the Internet.
Note, however, that DRAGON finds filtering opportunities for all
prefixes whatever their origin.

Moreover, DRAGON enables close to 80% of the ASs to real-
ize the maximum possible filtering efficiency of 50%. This is not
surprising since the topology is policy-connected and the majority
of ASs are stubs. When the topology is policy-connected, stubs
without peers retain only the parent prefixes. Interestingly, the sub-
plot in Figure 8 asserts the good performance of DRAGON even
for non-stubs, where around 50% of them still attain the maximum
possible filtering efficiency.

As expected, aggregation prefixes increase performance. With
aggregation prefixes, every AS has a filtering efficiency of more
that 70% with close to 80% of the ASs attaining the maximum
filtering efficiency of 79%. It is rarely the case that the origin AS of
an aggregation prefix coincides with the origin ASs of the prefixes
it covers, that is, of the prefixes that have the aggregation prefix for
parent. On the other hand, the algorithm to generate aggregation
prefixes ensures that their origin ASs are as close as possible, in
terms of the provider-customer hierarchy, to the origin ASs of the
covered prefixes. Consequently, although the covered prefixes are
not necessarily filtered by the neighbors of their origin ASs, they
are filtered along a small vicinity of those ASs, justifying the good
performance of DRAGON.

DRAGON performs better than traditional FIB compression
techniques for the majority of the ASs. FIB compression refers
to algorithms run locally at each AS with the purpose of reducing
the size of forwarding-tables without change in the forwarding of
data-packets [38, 35, 29]. FIB compression does not affect routing-
tables or the dynamics of BGP. Next to the curves for DRAGON,
Figure 8 plots the filtering efficiency obtained when running a typ-
ical FIB compression algorithm [38] on our dataset (FIB curves),
using the code provided by the authors.

Like DRAGON, FIB compression allows aggregation prefixes to
be introduced. Without aggregation prefixes, DRAGON performs
better than FIB compression on the majority of the ASs, and at least
as good on all of them. This is because DRAGON is more relaxed
on its filtering assumptions. DRAGON keeps only the attributes
of routes used to forward data-packets whereas FIB compression
preserves the exact forwarding neighbors, ties broken by the length
of AS-PATH.

With aggregation prefixes, FIB compression can perform slightly
better than DRAGON (~1% better). This is because the introduc-
tion of aggregation prefixes is not optimized in DRAGON. An AS
originates an aggregation prefix only if it elects customer routes
for all covered prefixes. There are PI prefixes whose address space
could be aggregated except that no AS elects a customer route for
all of them. Hence, no AS originates an aggregation prefix for those
PI prefixes, preventing them from being subject to filtering. In con-
trast, FIB compression does not care about elected routes when it
aggregates prefixes. It is possible to optimize the introduction of
aggregation prefixes in DRAGON in order to match the filtering
efficiency of FIB compression. An AS could originate an aggrega-
tion prefix covering prefixes for which it elects a peer or a provider
route as long as the aggregation prefix is announced with a provider
route, meaning that it is announced only to the customers of the AS,
so as to satisfy rule RA.

5.3 Convergence upon link failures

We implemented a DRAGON simulator on top of SimBGP [28],
an event-driven simulator for BGP. Using our simulator, we com-
pare the transient behavior of DRAGON against that of standard

BGP upon link failures. We focus on link failures as they are more
demanding on the routing system than link additions [20]. For sim-
plicity, we do not consider the case where new aggregation prefixes
are introduced.

We run our simulations on prefix-trees. A prefix-tree is a subset
of the prefixes of the routing system composed of a prefix without
a parent and all less specific prefixes. The dynamics of DRAGON
is independent from one prefix-tree to another. The majority of
the prefix-trees are trivial, containing a single prefix. For them,
DRAGON and BGP share the same convergence behavior as fil-
tering is impossible. Since we are interested in understanding the
difference between DRAGON and BGP, we only consider non-
trivial prefix-trees. There are 25,266 of them having a median of 5
prefixes. We present results for 250 randomly selected non-trivial
prefix-trees.

For each non-trivial prefix-tree, we distinguish between link fail-
ures that trigger de-aggregation of the root of the prefix-tree and
those that do not (see Section 3.8). The probability of a link failure
triggering de-aggregation is small. In the worst case, only 0.03%
of all link failures can cause the root of the prefix-tree to be de-
aggregated. For each prefix-tree, we exhaustively fail all links that
can cause de-aggregation. For the rest of the links, we run 4,000 in-
dependent trials, each trial corresponding to a link failure selected
randomly. In both cases, we measure the total number of routes (ad-
vertisements and withdrawals) exchanged network-wide after the
failure until a new stable state is reached. We used the default Min-
imum Route Advertisement Interval (MRAI) value of 30 seconds.

Figure 9 plots the results. On the left, we show the CCDF of
the number of routes exchanged network-wide for link failures that
do not cause de-aggregation. On the right, we show the CCDF for
those link failures that cause de-aggregation.

DRAGON exchanges fewer routes than BGP upon link failures.
For non-trivial prefix-trees, DRAGON exchanges less routes than
BGP in 95% of the cases and less than half those exchanged with
BGP in more than 50% of the cases.

When de-aggregation is not required (99.97% of the failures), a
link failure in DRAGON produces, at worst, a network-wide effect
for the prefix at the root of the prefix-tree and only a local effect for
each of the other prefixes. In contrast, in BGP, all prefixes in the
prefix-tree are prone to network-wide effects. The left plot in Fig-
ure 9 corroborates this. DRAGON generates more than 100 routes
for only 5% of the cases whereas BGP generates more than 100
routes for more than 15% of the cases. Furthermore, DRAGON
does not generate any route for 40% of the link failures, while BGP
generates routes for more than 98% of the link failures.

When a link failure causes de-aggregation (0.03% of the fail-
ures), DRAGON can generate more routes than BGP. The right
plot in Figure 9 shows that DRAGON announces more routes in
60% of the cases. The number of de-aggregated prefixes origi-
nated by an AS for a given prefix-tree is bounded by the difference
in length between the most and the least specific prefixes in that
prefix-tree. Consistent with this observation, the plot shows that
the number of routes exchanged by DRAGON never exceeds that
exchanged by BGP by more than one order of magnitude. While
the results are already good, we believe that they can be improved
further by ensuring that the combination of de-aggregates into an
aggregation prefix at a different AS (see Section 3.8) occurs before
the de-aggregates are propagated network-wide.

6. RELATED WORK

Scalability limits of routing. The study of the scalability lim-
its of routing has a long and rich history [18, 34, 19]. However,
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Figure 9: In 95% of the cases, BGP exchanges more routes than DRAGON for non-trivial prefix-trees. When a failure does not cause
de-aggregation (99.97% of the cases), DRAGON (resp., BGP) sends more than 100 routes for 5% (resp. 15%) of the cases (left plot).
When a failure causes de-aggregation (0.03% of the cases), DRAGON can generate more routes than BGP, but never more than one order of

magnitude (right plot).

almost all of the scalability work is premised on shortest-path rout-
ing, showing a fundamental trade-off between the sizes of forward-
ing tables and the stretch in the lengths of paths followed by data-
packets in relation to distances. A recent paper embarks on the
scalability limits of policy-based routing [14], suggesting that the
export rules of the GR routing policies lead to efficient routing, a
result that is consistent with our findings. In contrast to the routing
strategies of [14], DRAGON is a distributed algorithm proposed for
the Internet’s existing IP addressing scheme and has been framed
for arbitrary routing policies.

Characterizing growth of the routing system. Measurement
studies track the growth in the number of IP prefixes and BGP up-
date messages over time [1, 16], and identify the causes of growth
such as multi-homing, traffic engineering, and address-allocation
policies [26, 7, 25, 11]. DRAGON reduces the number of prefixes
and update messages.

Reducing forwarding-table size. As the number of IP prefixes
grew, researchers explored ways to compress the forwarding-tables
by aggregating related entries [38, 35, 29] or directing some traffic
to routers with room for larger tables [6]. These optimization tech-
niques do not reduce the size of routing-tables or the number of
BGP update messages, and require re-optimization when forward-
ing decisions change.

Reducing routing-table size. Best current practices for reduc-
ing the size of routing-tables rely on the diligence of network oper-
ators to apply static filters to BGP routes learned from each neigh-
bor. However, these techniques cannot aggregate routes originat-
ing several hops away, and can sometimes lead to black holes and
loops [21]. Other techniques for reducing the size of routing-tables
[17] work only within a single AS, missing opportunities for global
scalability gains.

Inter-domain route aggregation. Our recent short paper [33]
presented filtering strategies to scale the Internet routing system,
assuming the GR routing policies and only one parent prefix. One
of these strategies applies exclusively to nodes that elect provider
routes whereas the other requires changes to both the control- and
data-planes. In the present paper, the filtering strategy and accom-
panying announcement rule are valid for general routing policies
and arbitrary levels of prefixes, apply to all nodes, and operate ex-

clusively at the control-plane. In addition, in the present paper, we
build the filtering strategy into the design of DRAGON, addressing
route-consistency, aggregation prefixes, partial deployment, traffic
engineering, and network dynamics.

Clean-slate architectures. Many “clean-slate” routing archi-
tectures have been proposed (see [27] for a survey) that route on
AS numbers or loose source routes. However, these architectures
require a major overhaul of Internet routing, whereas DRAGON
works with today’s BGP.

7. CONCLUSIONS

DRAGON is a distributed route-aggregation algorithm that op-
erates with standard routes of a vector-protocol. It comprises a fil-
tering code and an announcement rule that together allow nodes to
forgo prefixes while avoiding black holes. DRAGON applies to any
routing policies, but if these policies are isotone, then DRAGON
leads to an optimal route-consistent state, reachable through inter-
mediate stages of deployment all of which are route-consistent.

In inter-domain routing, DRAGON harnesses the existing align-
ment between prefix allocation and the provider-customer Internet
hierarchy to produce a very efficient routing system. Evaluation of
DRAGON on inferred topologies of the Internet show reductions in
the amount of forwarding and routing state on the order of 80% and
a parallel decrease in the route activity needed to deal with network
events.
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