Boosting existing networks with SDN
A bird in the hand is worth two in the bush

Laurent Vanbever

ETH Zirich (D-ITET)

Swisscom Innovation

May, 28 2015

Software-Defined Network

In few years, SDN has attracted

tremendous industry interest (and money)

VMware Acquires Once-Secretive Start-
Up Nicira for $1.26 Billion

JULY 23, 2012 AT 1:25 PM PT W Tweet 81 B3 Share | & Print

VMware, the software company I
best known for its virtualization

technology that forms the

backbones of so-called cloud I ' I
computing today, said it will pay I l

$1.26 billion for Nicira, a I

networking start-up that has I

sought to do to networks what

VMware has done to computers,

The news comes on the same day
that VMware was to report I ' I ‘ I l a
quarterly earnings. And while I

don’t usually cover VMware's

earnings, I may as well mention the results: The company reported revenue for the quarter
ended June rose to $1.12 billion, while earnings on a per-share basis were 68 cents.
Analysts had been expecting sales of $1.12 billion and earnings of 66 cents.

Nicira had been running in stealth mode for quite awhile; I got to reveal its plans to the
world last February.

The deal amounts to a nice payoff for Nicira’s investors including Andreessen Horowitz,
Lightspeed Venture Partners and NEA, as well as VMware founder Diane Greene and
venture capitalist Andy Rachleff.

With $600M Invested in SDN Startups, the Ecosystem Builds
XXX X4

Moare than S600 millon has been invested in at least two dozen software-

defined retworng (SON) startups 50 4, accordng to Rayno Roport Related Articles

research. You can expect that 10 continue to cimb. With the SDN ecosystemn How %0 Efectively Ermbed SON in the

staring to take hok! with a broad range of allances and distribution Ertorprse

partnerships, we're Just getting started. NFV and SON: What's e Diference
Two Yoars Later?

The Avista IPO wil help buld visibiity for next-generation, software-driven

networking. But Arsta & saling 28 own hardware and is not an SON pure- %Flow Crestor Peter Phasl On Taming

play. A new ina of SON startups, with a more radical approach to software- rmmo:sorumw

based networking, is bulding momentum, Those nower SON startups ar Networkdg

just getting their gedr into customens’ hands and starting 10 buld sales
channals, S0 you Can expact a long revenue ramp.

Festured Article: Bringing Data-Driven
SON 10 the Network Edge

NFV Deolvors Pervasive inteligence

This excement is boosting startup valuations, according to Rayno Report sor MNOs

research. There are now at laast ten SON stanups with valuations over $100

miion. As | reported in Apri, a recent investment in Cumulus Networks

pushed up the valuation of the private company north of S300 million, according to Industry sources, Big Switch, which
did a deal in 2012 valuing it near S170 million, took money from Intel in 2013, most kely boosting its valuation 10 over
S200 milkon, according 10 several SouNces.

‘ OPEN NETWORKING ® || Blog | Con
FOUNDATION
About Certification Technical Communities News & Events SDM

You are here: HOMe » Ouw Members

Member Listing STARTUP MEMBERS
- i .~
- @IA/D sADVA Akamai -
K. . O Ao Tl applied Attol
Open Networking Foundation
Aricent amrsa ARnu=EA Aftg) BARE O
alVik BamE BAREFCOT Bij: Paress
03/2011 founded
- 14 members
seofbcon srocae® A~ Pt @ENGN CENGN 8
' : 30 Cen>(CERAGON) (20 11N ERIEARR Cen>(34 Startup_members
2 o9 @A ow= e Ncomsa

i ' ' c ‘ t oo R l R
.cl"s c‘ Io‘ C' R'x O'.t m'an J. qu N l'v\E |.ON

S comsa ASCATERON Z CYAN ecode
- DECN ® ccode Friesty

Powosed by Switch and Socurly

- £ [EsH ETRI <

The SDN momentum also grows
in academia

The SDN momentum also grows

in academia

OpenFlow: enabling innovation in campus networks

N McKeown, T Anderson, H Balakrishnan... - ACM SIGCOMM ..., 2008 - dl.acm.org
Abstract This whitepaper proposes OpenFlow: a way for researchers to run experimental
protocols in the networks they use every day. OpenFlow is based on an Ethernet switch, with
an internal flow-table, and a standardized interface to add and remove flow entries. Our ...
Cited by 2829 Related articles All 106 versions Web of Science: 456 Cite Save

The SDN momentum also grows
in academia

OpenFlow: enabling innovation in campus networks

N McKeown, T Anderson, H Balakrishnan... - ACM SIGCOMM ..., 2008 - dl.acm.org
Abstract This whitepaper proposes OpenFlow: a way for researchers to run experimental
protocols in the networks they use every day. OpenFlow is based on an Ethernet switch, with
an internal flow-table, and a standardized interface to add and remove flow entries. Our ...
Cited by 2829 Related articles All 106 versions Web of Science: 456 Cite Save

in ~6 years

SDN is reaching into
many CS communities

Networking Systems
SIGCOMM OSDI
NSDI SOSP
HotNets SOCC

CoNEXT

Distributed
Algorithms

PODC
DISC

Security PL
CCS PLDI
NDSS POPL
Usenix OOPSLA

Security

Why?!

A network is a distributed system whose behavior

depends on each element configuration

Control plane

Data plane

‘- L

Control plane

Data plane
P Control plane

Data plane
... Control plane

M{}
%

3 Control plane

Control plane
Data plane

/)

Control plane

|I- Data plane

Data plane

Data plane

L

Control plane

| T~

Data plane

/,,
7

(

 Control plane

Data plane

Configuring each element is often done manually,
using arcane low-level, vendor-specific “languages”

Configuring each element is often done manually,
using arcane low-level, vendor-specific “languages”

Cisco 10S Juniper JunQOS
! interfaces {
ip multicast-routing so0-0/0/0 {
! unit 0 {
interface Loopbacke family inet {
ip address 120.1.7.7 255.255.255.255 address 10.12.1.2/24;
ip ospf 1 area © }
! family mpls;
! }
interface Etherneto/o }
no ip address ge-0/1/0 {
! vlan-tagging;
interface Etherneto/0.17 unit 0 {
encapsulation dot1Q 17 vlan-id 100;
ip address 125.1.17.7 255.255.255.0 family inet {
ip pim bsr-border address 10.108.1.1/24;
ip pim sparse-mode }
! family mpls;
! }
router ospf 1 unit 1 {
router-id 120.1.7.7 vlan-id 200;
redistribute bgp 700 subnets family inet {
! address 10.208.1.1/24;
router bgp 700 }
neighbor 125.1.17.1 remote-as 100 }
}

!
address-family ipv4 -
redistribute ospf 1 match internal external 1 external 2 }
neighbor 125.1.17.1 activate
!
address-family ipv4 multicast
}

network 125.1.79.0 mask 255.255.255.0
redistribute ospf 1 match internal external 1 external 2?2 bep {

protocols {
mpls {
interface all;

“Human factors are responsible

for 50% to 80% of network outages”

Juniper Networks, What’s Behind Network Downtime?, 2008

“Cost per network outage

can be as high as 750 000%”

Smart Management for Robust Carrier Network Health

and Reduced TCOI!, NANOG54, 2012

In contrast, SDN simplifies networks...

Control plane

Data plane

... Control plane

Data plane

\

Control plane

Data plane

==

Control plane

Data plane

[|

5 Control plane

Control plane
Data plane

Data plane | /4.
Control plane

“’ Data plane

Control plane

Data plane

vl

4

<

 Control plane

Data plane

by removing the intelligence from the equipments

Control plane

Data plane
I| . : '
) .~ J‘B‘ \y -
i

Control plane

5 Control plane

Control plane \ ‘ Data plane
| Data plane | /4.
DEIE [ElEImG Control plane Control plane
Data plane ’ Data plane
... Control plane /] A

Data plane Control plane

F Data plane

Control plane

Data plane Sl

vl

4

<

. by removing the intelligence from the equipments

.
~N w T~

Data plane
- / ‘
\ - Q ,‘3‘ l = '
‘ —— T
Data plane
> \) | A P
' ata plane
Data plane - ﬂ&}
‘ Data plane
)/ Data plane ’
< V
Data plane

| T~

Data plane

vl
7

<

=
8
-~ .
3 ;

... and centralizing it in a SDN controller
that can run arbitrary programs

~ w S~
Data plane

-
-
-

Data plane

‘oo q

Data plane

| T~

Data plane =

vl

4

<

N

~ Data plane

0
)
.
.
.
.
.
.
(V4
— o

Data plane

pd

Data plane

The SDN controller programs forwarding state
in the devices using an open API (e.g., OpenFlow)

forwarding entries @\
open API ‘ L=

SDN Controller

-
A - ‘ ---------------------

llllllllllllll

Data plane

.
““
. o
. o* |
. *
. - |
.* .
. “ ‘.
| = ‘1
o s ,
. 5 ‘
. ‘ |
\ o*] . ‘
I = /
. . ‘ .‘
. + g g
“““ o o o *
: i y 5 s »
. +* R . . !
] o,
Q~ N y
Q L : ;
Q & K :
Q Q !
3 °, 1\
*

‘
. 4
»
.
.
.
.
.
.
.
.
.

.
“““
. .
* .
* .
. o
. R

. o
* .
* .
* S
. K
13 o

Data plane

Q
o 5 I~
Q 5 A
o 0
Q . -
. . . . |
. . . . |
i Q K N :
o* . . . : |
. . :
o* . : ‘
. .
“““ . | |
ot o . - |
. R . ‘
- . : |
Q : ‘
. . - |
. . :
o . - | ,¢>
ata plane .. . | |
. .
- -
Q
! -
! -
-) :
o 0
Q K :
M 0
3

Data plane

Y
.
.
.
.
.
.
.
.
.
.
o
.

.
o
*
.
.
.

Data plane

[T~

Data plane

a
7

<

SDN also enables us, researchers,
to innovate, at a much faster pace

closed software

closed hardware

Cisco™ device

SDN also enables us, researchers,

to innovate, at a much faster pace

SDN controller

e T

===='""'==“‘"""“'"‘“‘==="m""iﬁ'§’

SDN device

open-source software

standardized interface (OpenFlow)

standardized hardware

Sounds great

Sounds great, but...

How do you go from a traditional network
to a SDN-enabled one?

Traditional > SDN

Well... not easily

Deploying SDN requires to upgrade network ...

devices
management systems

operators

challenging, time-consuming and therefore costly

To succeed, SDN-based technologies
should possess at least 3 characteristics

To succeed, SDN-based technologies
should possess at least 3 characteristics

provide benefits

Small investment under partial deployment

(ideally, with a single switch)

To succeed, SDN-based technologies
should possess at least 3 characteristics

Low risk

require minimum changes

to operational practices

be compatible with existing

technologies

To succeed, SDN-based technologies
should possess at least 3 characteristics

High return solve a timely problem

This talk is about two such SDN-based technologies

Fibbing Supercharged

improved flexibility performance boost

Fibbing
improved flexibility

central control over
distributed system

Supercharged

performance boost

Fibbing

improved flexibility

Supercharged

performance boost

reduce convergence time
by 1T000x

Fibbing
improved flexibility

central control over
distributed system

Supercharged

performance boost

Wouldn’t it be great to manage
an existing network “a la SDN"?

Wouldn't it be great to manage
an existing network “a la SDN™?

what does it mean?

Instead of configuring a network
using configuration “languages” ...

Cisco 10S Juniper JunOS Alcatel TimOS
Control-Plane Control-Plane Control-Plane
Data-Plane Data-Plane Data-Plane

Juniper Alcatel

... program it from a central SDN controller

(4]

SDN Controller | —— (Floodlight, OpenDaylight,...)
T,
Forwarding entries b
ControI-PIangx‘”’ Control-Plane "“u.(;ontrol-PIane
»" i "4
Data-Plane Data-Plane Data-Plane

Cisco Juniper Alcatel

For that, we need an API
that any router can understand

SDN Controller
1,

Control-Plane.| Control-Plane |} [~Control-Plane
/3 A L)
Data-Plane Data-Plane Data-Plane

Juniper Alcatel

Routing protocols are perfect candidates
to act as such API

messages are standardized

routers must speak the same language

behaviors are well-defined

e.g., shortest-path routing

implementations are widely available

nearly all routers support OSPF

Fibbing

Fibbing

= lying

Fibbing

to control router’s forwarding table

Central Control Over Distributed Routing

Joint work with: Stefano Vissicchio, Olivier Tilmans and Jennifer Rexford

1 Fibbing

lying made useful

2 Expressivity

any path, anywhere

3 Scalability
1 lie is better than 2

Central Control Over Distributed Routing

1 Fibbing

lying made useful

Expressivity

any path, anywhere

Scalability
1 lie is better than 2

A router implements a function
from routing messages to forwarding paths

input function output
| MPLS
Routing > DERE . Forwarding
Messages BGP Paths
> >

L L T T T T T T P P PP PP PP PP TP PRI PRI

IP router

The forwarding paths are known,
provided by the operators or by the controller

output
MPLS
- OSPF > |
Routing Forwarding
Messages BGP Paths

>

Known

The function is known, from the protocols’
specification & the configuration

function
MPLS
Routing OSPF Forwarding
Messages BGP Paths

L T T T T T P P T PP P PP PP PP PP PP PP PRRPTP

Given a path and a function, our framework computes
corresponding routing messages by inverting the function

input function output

~ MPLS
Routing » DERE . Forwarding
Messages BGP Paths

Inverse

The type of input to be computed depends
on the routing protocol

Protocol Family Algorithm/ Router Input
Function
IGP Link-State Dijkstra Network graph

BGP Path-Vector Decision process Routing paths

We focus on routers running link-state protocols
that take the network graph as input and run Dijkstra

Protocol Family Algorithm/ Router Input
Function

IGP Link-State Dijkstra Network graph

Consider this network where a source
sends traffic to 2 destinations

10]
Y .
“ 3 ,\D)
O

source destination

traffic flow

As congestion appears, the operator wants
to shift away one flow from (C,D)

initial desired

Moving only one flow is impossible though
as both destinations are connected to D

@

@
Q

N

impossible to achieve by
reweighing the links

Let’s lie to the router

10]

3

Let’s lie to the router

Fibbing J

controller
1 N
A B
Q \ \ routing
session
10]
c) b

Let’s lie to the router, by injecting
fake nodes, links and destinations

Fibbing J

controller

.
R

session

10]

3

Let’s lie to the router, by injecting
fake nodes, links and destinations

Fibbing J

‘ controller
1 / Lie
A B
7" &
10 1 .""’@

Lies are propagated network-wide
by the protocol

— controller

After the injection, this is the topology seen
by all routers, on which they compute Dijkstra

Fibbing =
controller

Now, C prefers the virtual node (cost 2)
to reach the blue destination...

-
Fibbing ;J

controller

As the virtual node does not really exist,
actual traffic is physically sent to A

-
Fibbing L—‘J

controller

workflow

Fibbing starts from the operators requirements
and a up-to-date representation of the network

path network
regs. graph

Out of these,
the compilation stage produces DAGs

Compilation
S— + § - CC _________________ O\ _______________________
o o
path network forwarding

regs. graph DAGs

Forwarding graphs (DAGs) are compiled
from high-level requirements

Path(C AB dl)

|
pEG

DAG

The augmentation stage augments the network graph
with lies to implement each DAG

Augmentation

forwarding augmented
DAGs graph

The augmentation stage augments the network graph
with lies to implement each DAG

o
.
0
o
0

Compilation output Augmentation output

The optimization stage reduces
the amount of lies necessary

Optimization

— g — osg=gd

augmented reduced
graph graph

The injection stage injects
the lies in the production network

Injection

-~ %\
— S
~N /

reduced running
graph network

Central Control Over Distributed Routing

Fibbing

lying made useful

2 Expressivity

any path, anywhere

Scalability
1 lie is better than 2

Fibbing is powerful

Fibbing is powerful

Theorem Fibbing can program

any set of non-contradictory paths

Fibbing is powerful

Theorem Fibbing can program

any set of non-contradictory paths

Fibbing is powerful

Theorem Fibbing can program

any set of non-contradictory paths

—— any path is loop-free

(e.g., [s1, a, b, a, d] is not possible)

—— paths are consistent

(e.g. [s1, a, b, d] and
[s2, b, a, d] are inconsistent)

Fibbing can load-balance traffic
on multiple paths

1

source destination

demand

0.75

0.50

0.75

Links have a capacity of 1

0.75

0.50

0.75
0.50

0.75

Links have a capacity of 1

With such demands and forwarding,
the lower path is congested (1.25)

0.75

0.50

0.75

Congestion can be alleviated by splitting
the orange flow into two equal parts (.25)

A B C D
/0.25\
E F G H
\0.25/

This is impossible to achieve
using a link-state protocol

0.75

0.75 0— i 1

0.50

0.75
0.50

0.75

This is easily achievable with Fibbing

One lie is introduced,
announcing the orange destination

AJ—1 B C
Oey 50
1%»
J
E F G

Now E has two equal cost paths (7) to reach
only the orange destination and use them both

Central Control Over Distributed Routing

Fibbing

lying made useful

Expressivity

any path, anywhere

3 Scalability
1 lie is better than 2

Scalability

time space

to compute lies # of lies

time space

to compute lies # of lies

Computing virtual topologies is easy:
polynomial in the number of requirements

Computing virtual topologies is easy:
polynomial in the number of requirements

initial desired

Computing virtual topologies is easy:
polynomial in the number of requirements

initial desired virtual

For each router r whose next-hop

for a destination d changes to j:

For each router r whose next-hop

for a destination d changes to j:

Let w be the current path weight between r and d

Create one virtual node v advertising d

with a weight x < w

Connects it to rand j

Create one virtual node v advertising d

with a weight x < w

always possible

by reweighting the initial graph

Create one virtual node v advertising d
with a weight x < w

Computing virtual topologies is easy:
polynomial in the number of requirements

initial desired virtual

Computing virtual topologies is easy:
polynomial in the number of requirements

initial desired virtual

The resulting topology can be huge
and each router needs to run Dijkstra on it

Dijkstra’s algorithm O(‘E‘ + ‘V‘ Iog ‘V‘)

complexity ‘ ‘

#nodes #links

time space

to compute lies # of lies

Lots of lies are not required,
some of them are redundant

Let’s us consider
a simple example

0 1
B

1
100

_
o)
o F

destination

/
oo —He e

1

|
¢
A

100

10

e
O

1

original shortest-path
“down and to the right”

desired shortest-path
“up and to the right”

Our naive algorithm would
create 5 lies—one per router

|
M
Ve

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

¥
Q
Q
0
Q
. Q
. Q
. Q
. Q
. Q
. Q
. Q
. Q
) Q
. Q
. Q
. Q
’I K

"\

100 #
.

E

-
-
»
»
-
-
-
-
»

»
-

)

P\

A single lie is sufficient (and necessary)

We can minimize the topology size
using an Integer Linear Program

While efficient,
an ILP is inherently slow

Naive Integer Linear
Program
time optimal slow

space large optimal

Computation time matters
in case of network failures

A loop is created as C starts to use A
which still forwards according to the lie

The solution is to remove the lie

o
o
0

1

(&

O/Cc/ @
3

The solution is to remove the lie

Upon failures, the network topology
has to be recomputed, fast

Naive Integer Linear
Program

time optimal slow

space large optimal

Naive Merger Integer Linear
Program

time optimal fast slow

space large small optimal

Merger iteratively tries to merge lies
produced by the Naive algorithm

Merger iteratively tries to merge lies
produced by the Naive algorithm

] 100
100 (A B]
]
C D E
100 P ‘ 1 OO““‘ "‘
\ SN A SN

Merger iteratively tries to merge lies
produced by the Naive algorithm

] 100
100 (A B |
|
C D E
-\“"“ ..:..:' 'I
100;{

Merger iteratively tries to merge lies
produced by the Naive algorithm

1 100
1
~8 \]OO A B
Ve
J
C . E
cﬂ““"‘ :::.:]
100 3 ‘

Merger iteratively tries to merge lies
produced by the Naive algorithm

1 100

Merger iteratively tries to merge lies
produced by the Naive algorithm

‘A
S
1. 7100
~8 \]OO A B
¢
5
C 5 |

Merger iteratively tries to merge lies
produced by the Naive algorithm

M
Yo
1:. 1 00
A B
C D E

Merger iteratively tries to merge lies
produced by the Naive algorithm

Naive Merger Integer Linear
Program

time optimal fast slow

space large small optimal

Let’s compare the performance
of Naive and Merger

Naive Merger

time optimal fast

space large small

computation
time (s)

10 —

0.1 —

0.001 -

| | |
20 40 60

% of nodes changing next-hop

80

Naive computes entire virtual topologies in ms

computation 10 —
time (s)

0.1 —

naive (median)

0.001 - 7=

| | | | |
0 20 40 60 80

% of nodes changing next-hop

Merger is relatively slower,
but still, sub-second

computation 10 —
time (s)

merger (median)

_— ,WMMW

naive (median)

0.001 - A |

0 20 40 60 80

% of nodes changing next-hop

topology
increase (%)

80 —

60 —

40 —

20 —

| | |
20 40 60

% of nodes changing next-hop

80

Naive introduces one lie
per changing next-hop

topology 80 —
increase (%) _ _
naive (median)
60 —
40 —
20 —
0 —

| | | | |
0 20 40 60 80

% of nodes changing next-hop

Merger reduces the size of the topology
by 25% on average (50% in the best case)

topology 80 —
increase (%) _ _
naive (median)
60 —
40 —
merger (median)
20 —
0 —

0 20 40 60 80

% of nodes changing next-hop

We implemented a fully-fledged Fibbing
prototype and tested it against real routers

We implemented a fully-fledged Fibbing
prototype and tested it against real routers

How many lies can a router sustain?

How long does it take to process a lie?

Existing routers can easily sustain
Fibbing-induced load, even with huge topologies

fake router

nodes memory (MB)
1000 0.7

5000 6.8

10 000 14.5

50 000 76.0

100 000 153 DRAM is cheap

Because it is entirely distributed,
programming forwarding entries is fast

fake installation
nodes time (s)
1000 0.9

5000 4.5

10 000 8.9

50 000 44.7

100 000 89.50 894.50 ps/entry

Central Control Over Distributed Routing

Fibbing

lying made useful

Expressivity

any path, anywhere

Scalability
1 lie is better than 2

Fibbing realizes some of the SDN promises
today, on an existing network

Facilitate SDN deployment

SDN controller can program routers and SDN switches

Simplify controller implementation

most of the heavy work is still done by the routers

Maintain operators’ mental model

good old protocols running, easier troubleshooting

Fibbing

improved flexibility

Supercharged

performance boost

reduce convergence time
by 1T000x

IP routers are pretty slow to converge
upon link and node failures

R1

Provider #1 ($)
IP: 203.0.113.1
MAC: 01:aa

Provider #2 ($9)
IP: 198.51.100.2
MAC: 02:bb

512k IP
prefixes

R2

Provider #1 ($)
IP: 203.0.113.1
MAC: 01:aa

Provider #2 ($9)
IP: 198.51.100.2
MAC: 02:bb

R1’s Forwarding Table

prefix

Next-Hop

512k IP
prefixes

R1

0

/

|

™~

R2

S
=

R3

Provider #1 ($)
IP: 203.0.113.1
MAC: 01:aa

Provider #2 ($9)
IP: 198.51.100.2
MAC: 02:bb

All 512k entries point to R2

R1’s Forwarding Table

256k

512k

prefix

1.0.0.0/24
1.0.1.0/16

100.0.0.0/8

200.99.0.0/24

Next-Hop

(01:aa, 0)
(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

512k IP
prefixes

Provider #1 ($)
IP: 203.0.113.1
MAC: 01:aa

Provider #2 ($9)
IP: 198.51.100.2
MAC: 02:bb

Upon failure of R2,
all 512k entries have to be updated

R1’s Forwarding Table

prefix Next-Hop 512k IP

prefixes Provider #1 ($)

IP: 203.0.113.1
MAC: 01:aa

1 1.0.0.0/24 (01:aa, 0)
2 1.0.1.0/16 (01:aa, 0)

Provider #2 ($9)
IP: 198.51.100.2

512k 200.99.0.0/24 (01:aa, 0) R3 MAC: 02:bb

256k 100.0.0.0/8 (01:aa, 0)

Upon failure of R2,
all 512k entries have to be updated

R1’s Forwarding Table

prefix Next-Hop
1 1.0.0.0/24 (01:aa, 0)
2 1.0.1.0/16 (01:aa, 0) S
R1 Provider #2 ($$

256k 100.0.0.0/8 (01:aa, 0)

NER -
IP: 198.51.100.2

(01:aa, 0) MAC: 02:bb

512k 200.99.0.0/24 R3

R1’s Forwarding Table

256k

512k

prefix

1.0.0.0/24
1.0.1.0/16

100.0.0.0/8

200.99.0.0/24

Next-Hop

(02:bb, 1)
(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

R1

|

T

R3

Provider #2 ($9)
IP: 198.51.100.2
MAC: 02:bb

R1’s Forwarding Table

256k

512k

prefix

1.0.0.0/24
1.0.1.0/16

100.0.0.0/8

200.99.0.0/24

Next-Hop

(02:bb, 1)
(02:bb, 1)

(01:aa, 0)

(01:aa, 0)

R1

|

T

R3

Provider #2 ($$)
IP: 198.51.100.2
MAC: 02:bb

R1’s Forwarding Table

256k

512k

prefix

1.0.0.0/24
1.0.1.0/16

100.0.0.0/8

200.99.0.0/24

Next-Hop

(02:bb, 1)
(02:bb, 1)

(02:bb, 1)

(01:aa, 0)

R1

|

T

R3

Provider #2 ($$)
IP: 198.51.100.2
MAC: 02:bb

R1’s Forwarding Table

prefix Next-Hop
1 1.0.0.0/24 (02:bb, 1)
2 1.0.1.0/16 (02:bb, 1)

|

R1 Provider #2 ($$)

™~ @ IP: 198.51.100.2

512k 200.99.0.0/24 (02:bb, 1) R3 MAC: 02:bb

256k 100.0.0.0/8 (02:bb, 1)

We measured how long it takes
in our home network

Cisco Nexus 9k

ETH recent routers

25 deployed

convergence 150 —
time (s)

10 —

1 -

0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

worst-case

convergence 150 —
time (s)

10 —

1 -

0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

worst-case

convergence 150 —
time (s)
median case
10 —
1 —
0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

Traffic can be lost for several minutes N
~/Z.D> Min.

150 —

10 —

0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

The problem is that
forwarding tables are flat

Entries do not share any information

even if they are identical

Upon failure, all of them have to be updated

inefficient, but also unnecessary

The problem is that
forwarding tables are flat

Entries do not share any information

even if they are identical

Upon failure, all of them have to be updated

inefficient, but also unnecessary

Solution: introduce a hierarchy

as with any problem in CS...

replace this...

Router Forwarding Table

prefix Next-Hop
1 1.0.0.0/24 (01:aa, 0) port 0
2 1.0.1.0/16 (01:aa, 0)
—

256k 100.0.0.0/8 (01:ag,0) = POrt1

512k 200.99.0.0/24 (01:ag, 0)

... with that

Mapping table
prefix pointer
Pointer table
1 1.0.0.0/24 port O
pointer NH —l

2 1.0.1.0/16 —
(01:aa, 0) | =)

port 1
256k 100.0.0.0/8

512k 200.99.0.0/24

Upon failures, we update the pointer table

Router Forwarding Table

Mapping table
1 1.0.0.0/24
2 1.0.1.0/16
256 100.0.0.0/8

512

200.99.0.0/24

—

Pointer table

pointer

0x666

NH

(01:aa, 0)

port O
—

—
port 1

Here, we only need to do one update

Router Forwarding Table

Mapping table
1 1.0.0.0/24
2 1.0.1.0/16
256 100.0.0.0/8

512

200.99.0.0/24

—

Pointer table

pointer

0x666

NH

(02:bb, 1)

port O
—

—
port 1

Nowadays, only high-end routers
have hierarchical forwarding table

Expensive

by orders of magnitude

Limited availability

only a few vendors, on few models

Limited benefits

of fast convergence, if not used network-wide

We can build a hierarchical table

Mapping table
prefix pointer

—p 1 1.0.0.0/24 e

512k 200.99.0.0/24

Pointer table

pointer NH

We can build a hierarchical table
using two adjacent devices

Mapping table
prefix pointer Pointer table
pointer NH —_—

—_—)] 1.0.0.0/24 0x666 —m
0x666 (02:bb, 1) |==———

512k 200.99.0.0/24 0x666

IP router

SDN switch

Supercharged

Supercharged

boost routers performance

by combining them with SDN devices

We have implemented a fully-functional

“router supercharger”

Supercharged router

Routing
controller

{ REST

SDN
controller

Routing
<+—___| sessions

We used it to supercharge
the same router as before

Cisco Nexus 9k

ETH recent routers

25

+ (old) SDN HP switch
~2k$ cost

While the router took more than 2 min
to converge in the worst-case

convergence 150 —
time (s)

10 —

1 —

0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

The supercharged router systematically
converged within 150ms

convergence 150 —
time (s)
10 —
1 —_
supercharged
150mS — ”

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

Other aspects of a router performance
can be supercharged

convergence time

systematic sub-second convergence

memory size

offload to SDN if no local forwarding entry

bandwidth management

overwrite poor routers decisions

This talk was about two SDN-based technologies

that improve today’s networks

Fibbing Supercharged
improved flexibility performance boost
central control over reduce convergence time

distributed system by 1000x

Boosting existing networks with SDN
A bird in the hand is worth two in the bush

Laurent Vanbever

www.vanbever.eu

Swisscom Innovation

May, 28 2015

http://www.vanbever.eu

