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Abstract
Software Defined Internet Exchange Points (SDXes) increase the
flexibility of interdomain traffic delivery on the Internet. Yet, an
SDX inherently requires multiple participants to have access to
a single, shared physical switch, which creates the need for an
authorization mechanism to mediate this access. In this paper, we
introduce a logic and mechanism called FLANC (A Formal Logic
for Authorizing Network Control), which authorizes each partic-
ipant to control forwarding actions on a shared switch and also
allows participants to delegate forwarding actions to other partic-
ipants at the switch (e.g., a trusted third party). FLANC extends
“says” and “speaks for” logic that have been previously designed for
operating system objects to handle expressions involving network
traffic flows. We describe FLANC, explain how participants can use
it to express authorization policies for realistic interdomain routing
settings, and demonstrate that it is efficient enough to operate in
operational settings.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks] Network Architecture and Design: Net-
work Communications
General Terms: Algorithms, Design, Experimentation
Keywords: software defined networking (SDN); Internet exchange
point (IXP); BGP

1 Introduction
Software Defined Internet Exchange Points (SDXes) [12, 13] im-
prove the flexibility and function of interdomain routing on the
Internet, but the SDX inherently requires multiple participating au-
tonomous systems to access a shared physical switch at the Internet
Exchange Point (IXP). The SDX needs a mechanism to ensure that
each participant can install only flow table entries for traffic flows
that it is authorized to control. For example, no SDX participant
should be allowed install a forwarding table entry that does not
correspond to a route that is advertised in BGP. SDX participants
should also be able to conditionally delegate authorization to local
or remote participant. Consider a third-party service which can pro-
tect a network against Denial-of-Service (DoS) attack traffic such
those offered Verisign [30], Radware [24], and Arbor Networks [5]).
In this scenario, the victim’s network would like to delegate to a
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third party the authority to perform set of forwarding/redirection
actions over the subset of its traffic (e.g., only HTTP traffic), only
when DoS attack is detected.

Unfortunately, existing SDXes do not have a mechanism that
allows participants to express or enforce this type of control. In fact,
even conventional networks do not provide adequate mechanisms
for rich authorization policies. For example, when a network is
subject to a DoS attack and wants to route its traffic through a
third party, it must allow that third party to temporarily “hijack”
the delegated IP prefix, effectively exploiting BGP’s existing se-
curity weaknesses to become a man-in-the-middle for traffic that
is destined to the victim’s IP prefix. Even proposed mechanisms
such as RPKI have no mechanism for fine-grained delegation of
network control [14]. SDX needs a more expressive authorization
framework to ensure that only authorized parties can make such
modifications to the flow table, only when the delegation conditions
are satisfied.

This paper presents a FLANC(Formal Logic for Authorizing
Network Control), general logic that can determine whether any
particular action on traffic flows is authorized; we also implement
FLANC and integrate it with our existing SDX implementation.
Central to FLANC’s design is a trusted reference monitor that
can determine whether a principal (i.e., any entity that is trying to
perform an action) is authorized to perform actions on a network
flowspace (i.e., groups of traffic flows that have header values in
common). This reference monitor is analogous to the ones enforc-
ing authorization for certain operating system actions [31]. The
reference monitor takes both authorization policies (e.g., one net-
work principal’s statement that a different principal is authorized to
perform certain actions) and credentials as input (e.g., information
about who owns an IP prefix) and attempts to prove that the prin-
cipal who issues a request is authorized to perform the requested
actions on the data plane.

Realizing FLANC required us to extend existing authorization
logics to support expressions that concern network flowspace. Al-
though existing authorization logics provide a useful foundation,
they typically concern operations on discrete operating system
objects (e.g., files, processes) and thus do not apply to network
flowspace, which has more complicated relationships, such as sub-
set relationships. Our work extends authorization logics so that
they can be applied to network control. In a network setting, an
object is a set of data packets that can be represented as a subset of
flowspace; a request to perform an operation is an attempt to read
(i.e., see a particular set of packets) or write (i.e., affect the packets’
properties or how they are forwarded); and a principal is a network
control policy that is implemented either as device configuration or,
in the case of SDN, a control program. Although FLANC is gen-
eral and can apply to any SDN control environment where multiple
participants or control applications share access to physical switch
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NAL [26] A ::= [[v : S]]
S ::= A says S | S∧S | S∨S | (∀v : S) | (∃v : S) | SF

FLANC
SF ::= A owns F | T
F ::= ∗ | id | F ∪ F | F ∩ F | F ⊆ F |
T ::= F  F | T ∪ T | T ∩ T | T ⊆ T | T ∧χ

Table 1: FLANC Syntax. FLANC extends the NAL grammar with SF , terms
that allow for statements about flowspace.

resources, we focus in this short paper on FLANC’s application to
SDX. We have implemented FLANC and released it to the public as
an extension to SDX [15]. Our evaluation shows that that FLANC
is expressive and flexible enough to capture authorization policies
that participants might express at SDX, and that it introduces only
minimal overhead to existing flow modification operations: our
implementation of the FLANC reference monitor requires less than
100 microseconds to authorize flow table modifications.

The rest of the paper is organized as follows. Section 2 presents
the background information on existing authorization logic, relates
FLANC to existing authorization logics, such as NAL [26], and then
presents the FLANC authorization logic. Section 3 discusses how
we apply FLANC to SDX, Section 4 evaluates FLANC in a setting
that emulates an operational IXP, Section 5 discusses related work,
and Section 6 summarizes and outlines future research directions.

2 Authorizing Network Control
We provide a brief background on existing authorization logics that
we adopt for FLANC in Section 2.1. We then introduce the FLANC
authorization logic in Section 2.2, illustrating how we extend the
existing works with new axioms and inference rules.

2.1 Background

In conventional authorization frameworks [1, 2, 3, 4, 9, 18, 19,
20, 31], a guard acting as a reference monitor checks whether a
principal can perform a certain request (e.g., read, write) on one or
more objects (e.g., file, process). A request to access a resource or
obtain service is accompanied by credentials. To enforce a given
policy, a reference monitor uses credentials in conjunction with the
request to derive a formula representing the authorization policy. If
it succeeds in deriving this formula, it grants the request; otherwise,
it denies the request.

An authorization logic enables principals to express their beliefs
using says statements. For example, the formula A says S is inter-
preted to mean that S⊆W (A), where W (A) represents the set of
beliefs that A holds. The→ “speaks for” relation is a partial order
that obeys many of the same laws as implication. Thus, B→ A
represents B speaks for A, meaning that if B makes a statement, then
that is logically equivalent to A having made the same statement
(i.e., W (B)⊆W (A)).

Nexus Authorization Logic (NAL) [26] introduced two new con-
cepts beyond other conventional authorization logic (e.g., Abadi’s
CDD [1]), which we also use in FLANC: state predicates, which
enable reasoning about various state parameters; and restricted
delegation, which allows delegation of subset of beliefs against the
delegation of complete set of beliefs proposed by principal-centric
authorization frameworks.

Table 1 summarizes the syntax of NAL, which we build on in our
design of FLANC. The table also shows how we extend the NAL
syntax to operate on network flowspace; the next section describes
both these extensions to the logic, as well as the additional axioms
and inference rules we use to reason about authorization for network
control.

2.2 FLANC Authorization Logic
Conventional authorization logics are typically applied in systems
where (1) resources are discrete: an object might be a file, for
instance, and (2) set of allowable actions typically involve read and
write operations. Applying authorization logic to networks requires
grappling with two significant additional challenges:

1. A network authorization logic must permit actions over sets of
objects. Specifically, the logic must provide for predicates that
operate on sets (and subsets) of packets, expressed in terms of
flowspace.

2. A network authorization logic must also permit sets of actions
on the flowspace and deny others; concisely expressing these
permissions is challenging.

In the context of network control, a resource is a set of traffic flows
that lie within some flowspace (e.g., all packets with a certain set of
destination IP addresses), and the set of allowable actions involve
operations that not only include forwarding the packet on particular
output ports, but also potentially rewriting the packet into a different
part of flowspace. If, as in previous work [11], we can think of each
packet as a set of key-value pairs representing a “located packet”
(i.e., a packet and its location in the network), then each possible
action, including forwarding the packet, can be thought of as simply
a transformation on the packet’s metadata. We can thus view the set
of allowable actions as simply a set of allowable transformations
on the packet.

The network authorization logic’s transformations are inspired
by the notion of transfer functions in Header Space Analysis
(HSA) [17], but there are some subtle differences. Transfer func-
tions defined in HSA express one-to-one mappings between the
packets in input flowspace to the packets in the transformed flows-
pace (or multiple packets in the case of multicast). In contrast,
the network authorization logic specifies a range of points (i.e., a
region of flowspace) instead of a specific point to which the input
packet can be transformed. The set of all the mappings transform-
ing the packets in the input flowspace to the region specified in the
transformed space constitute the set of allowed transformations.

Although many of the same principles of existing authorization
logics may apply (i.e., those from Section 2.1 and RT [21]), these
logics must be extended with additional axioms/inference rules so
that they can be applied over network flowspace. In this section, we
consider how the principles from Section 2.1, including ownership
and delegation, apply to network flowspace. We also consider how
additional operations, such as the ability for a control program to
rewrite a packet, require us to extend existing authorization logics.
Axioms and Inference Rules. FLANC has axioms that allow a
reference monitor to reason about (1) ownership, or which princi-
pals own a particular resource (i.e., packets traversing flowspace)
(Section 2.2.1); (2) allowed actions, which allow a principal to
express which actions a control program can perform on packets
in some portion of flowspace (Section 2.2.2); and (3) delegation,
the process by which one principal can give another permissions to
operate on packets in some portion of flowspace (Section 2.2.3).

2.2.1 Ownership

Ownership relates the principals in the network with the objects
that they own. In the context of network control, objects are regions
of flowspace (which in turn define subsets of traffic). The owner
of an object is authorized to speak on behalf of that object, and
an ownership relationship is established with a (signed) statement
from a root of trust. This root of trust can be centralized as in case
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of RPKI or can be bitcoin-like decentralized public ledgers similar
to Namecoin [22]. The RPKI is a CA infrastructure that establishes
prefix ownership relationships. Decentralized flowspace resource
ownership works are still in nascent stage, thus FLANC currently
utilizes centralized CAs to establish resource ownership. In the
authorization logic, a CA makes a signed statement establishing
that some principal owns some portion of flowspace (e.g., an AS
might own an IP prefix). To express these notions of ownership,
we introduce a new “owns” connective in FLANC, as shown in
Table 1:

Axiom 1 (Ownership). R says (A owns F)⇒ A owns F

A signed statement from a root of trust, R, saying that A owns F
establishes that A owns F . If the reference monitor trusts R, then
the reference monitor believes that A owns F and can thus perform
some set of actions (or transformations) on F . Note that there can
be two owners (sender and receiver) for any data traffic.

2.2.2 Actions

In contrast to existing authorization logics, which allow a refer-
ence monitor to reason about sets of actions on system resources
(e.g., read, write), the network logic must allow reasoning about
a much richer set of actions on network flowspace. These actions
include:

• Forwarding the packet out a particular port (keeping in mind
that forwarding to some ports may be allowed, while forwarding
to others may be disallowed).

• Dropping the packet.

• Modifying fields in the packet’s header. As with forwarding,
certain modifications may be allowed, whereas others may be
disallowed.

• Reading the packet, or aggregated statistics about a group of
packets.

All of these actions can be represented as modifications on a virtual
packet header that represents a located packet. For example, using
the parlance from previous work [11], we can represent forward-
ing as simply modifying a virtual packet header representing the
packet’s outport value. We can also express read actions as
modifications that change the packet’s outport to a port that is
performing a read action.

FLANC allows a resource owner to define the set of allowable
actions for a part of flowspace.

Axiom 2 (Actions). A owns FA ⇒ TA ⊆W (A), where TA : FA 
F
′

A.

where TA is a set of transformations for some set of packets in
the network flowspace FA to some other part of flowspace, F

′

A. In
other words, if A owns flowspace FA (as might be established by the
ownership axiom), then its belief set can have some set of actions,
TA, which maps packets from the part of flowspace that it owns into
some other flowspace, F

′

A.
As we discussed earlier, there can be two owners for any data

traffic. We need to carefully consider F
′

A for these two type of own-
ers. For example, should the receiver be able to rewrite the source
IP of the packets (which would effectively amount to spoofing the
source IP address of the packets) arbitrarily? Should the sender
be able to rewrite destination IP addresses or ports arbitrarily? To
address this problem we allow the receivers to express packet trans-
formations on where the packet is destined, but it should not be

C
v:TA−−→A,C

v:TB−−→B

C
v:(TA∪TB)−−−−−−→(A,B)

(Aggregate)

C
v:TB−−→B,B

v:TA−−→A

C
v:(TB∩TA)−−−−−−→A

(Transitive)

C
v:(TA∧χA)−−−−−−→A,C

v:(TB∧χB)−−−−−−→B

C
v:(TA∧χA∪TB∧χB)−−−−−−−−−−→(A,B)

(Conditional Aggregate)

C
v:(TB∧χB)−−−−−−→B,B

v:(TA∧χA)−−−−−−→A

C
v:(TB∧χB∩TA∧χA)−−−−−−−−−−→A

(Conditional Transitive)

Table 2: Inference rules for FLANC.

able to perform modifications that modify information about the
packet’s provenance (i.e., where the packet is coming from) and
vice versa.

2.2.3 Delegation

A resource owner can allow other principals to perform actions
on flowspace that it owns by delegating those actions to them. A
owner of some network flowspace might delegate authorization to
perform a certain set of actions on flowspace.

Axiom 3 (Restricted Delegation). A says (B v:T−−→ A)⇒ (B v:T−−→ A),
where T ⊆W (A).

Here B speaks for set of transformation actions (T ). Note that
the axiom also stipulates that A must be authorized to say T (i.e.,
perform actions T on flowspace F) in order to delegate to B.

Delegating actions on flowspace Authorization to perform an ac-
tion T on F might come from multiple delegations, in which case
the authorized action is the union of multiple delegated actions,

summarized as the following inference rule: A says (C v:TA−−→ A))

∧ (B says (C v:TB−−→ B))⇒ C
v:(TA∪TB)−−−−−−→ (A,B). In other words, C is

authorized to perform an action on some portion of flowspace, if
and only if the requested action is the subset of union of the actions
that are delegated to C.

Because no principal can delegate authorization for actions over
flowspace that it is not authorized to perform, any delegation from
one principal to another must also be the intersection of that dele-
gation statement and actions for which it has the authorization. The
inference rule corresponding to this restriction can be summarized

as: A says (B v:TA−−→ A) ⇒ B
v:(TA∩T ∗)−−−−−−→ A, where T ∗ is the set of

transformation actions that A is authorized to perform. That is, A
can only delegate a set of actions that are a subset of what A is
authorized to perform.

2.2.4 Conditional Delegation

In some cases, a principal may want to either allow actions or
delegate conditionally, to specify that a principal should only be
allowed to perform certain actions when certain conditions are true.

One practical example of conditional delegation might be revo-
cation, which can simply be expressed as a time-bounded condition.
Another example might be the DoS mitigation example we dis-
cussed in section 1. In this example, a principal might want to say
that the third party is allowed to perform some particular action on
flowspace that it owns such as modifying the outport or dstip
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Participant  1 Participant  2 Participant  N

Southbound  APIs

Network  Events

Event  Handler Credential  Handler

Request  Handler

Credentials

…

Figure 1: The FLANC reference monitor has three components: Event
Handler, Request Handler, and Credential Handler.

of the packet if and only if some condition is true (e.g., an intru-
sion detection system has indicated that a denial of service attack
is underway). This requires a way for the reference monitor to
verify that the conditions have been satisfied. We assume that there
is some way for the reference monitor to obtain such statements,
such as via signed statements from a trusted monitoring appliance
similar to DOTS [25].

To allow for these expressions, we introduce the notion of con-
ditional actions and conditional delegations. For conditional dele-

gations we have, A says (B
v:(T∧χ)−−−−−→ A)⇒ (B

v:(T∧χ)−−−−−→ A), where χ

is a boolean expression that must be true for the delegation to be
valid. In other words, A allows B to act on behalf of some flowspace
only when all of the conditions in χ are true. The reference moni-
tor can use these axioms to derive inference rules for conditional
delegations, as shown in Table 2. When a principal expresses a con-
ditional delegation in terms of such a set of conditions, a reference
monitor will re-evaluate any authorization decision that depends on
a condition that changes.

3 Applying FLANC to SDX
We now apply FLANC to authorization problems that arise at an
Internet Exchange Point (IXP) and integrated FLANC with our
public implementation of the SDX controller [12, 13, 15]. We
first describe how FLANC can check the authorization of flow
table modifications from local participants who own the flow space
that they are trying to control. We then describe how FLANC’s
delegation mechanisms can be used to authorize third-party traffic
control, as is necessary in certain applications that rely on third-
party services (e.g., DDoS defense).

3.1 FLANC Design and Operation at SDX
SDX allows participants to specify fine-grained interdomain routing
policies; participants may be local to the IXP or remote; our existing
implementation composes policies from both remote and local
participants [12, 13]. Our recently released “industrial-grade” SDX
controller (iSDX) makes it possible to realize this functionality at
the world’s largest IXPs [12, 15]. iSDX partitions the control plane
across IXP participants (both local and remote). In this design, each
participant’s controller sends flow table modifications as JSON
messages to the fabric manager. FLANC’s reference monitor
checks the authorization of each of these attempted modifications.

The reference monitor has three components: (1) an event han-
dler, (2) a request handler, and (3) a credential handler, as shown in
Figure 1. The event handler processes incoming network events.

These events are anything that might cause authorization decisions
to change; they could include BGP updates, intrusion alerts, or
information about traffic loads. The credential handler receives the
list of credentials from resource owners and third parties for use in
authorization proofs. Finally, the request handler (1) translates the
principal’s requested actions into a set of flowspace transformations
(Treq) and (2) determines whether principal is authorized to perform
Treq.

The SDX controller must ensure that participants are authorized
to perform the requested action. Simple examples of this include
modifications by local participants for inbound traffic control, but
more complex scenarios involving third parties can also arise. For
example, suppose that a network such as Princeton (P) subscribes
to Verisign’s (V ) DoS protection service. The local IPS box at
Princeton identifies a fraction of attack traffic with low confidence
locally and requests redirection of this traffic through a remote
scrubber. Conventionally, this redirection occurs at the level of
an IP prefix. SDX allows P to push flow rules at the upstream
IXPs to (1) block the attack traffic it identified locally with higher
confidence, (2) redirect the potential attack traffic to V ’s network
at finer level of granularity. The upstream IXP that receives such
a request for redirection must ensure that P is allowed to delegate
control for the prefix that it is attempting to block or redirect. The
fabric manager at the IXP uses FLANC’s reference monitor to
perform this check.

3.2 Checking Authorization
Suppose the local IPS box at P identifies that the HTTP service
over dstip=128.112.136.35 is potentially under attack. P’s
controller at the upstream IXP sends the following flow-mod re-
quest to the fabric manager:
dPort=80∧dIp=128.112.136.35→ fwd(V )

The fabric manager translates this request into a flow table modifica-
tion request and sends it to the reference monitor (RM). Given the
request, the reference monitor must determine: (1) who the request
speaks for (which can be determined by successive application of
delegation axioms, as in Section 2.2.3); (2) whether the principal is
authorized to perform the requested actions.
Associating the request with a principal. The first part of the
proof involves attributing the messages received over a control
channel to a particular principal. For this part we can borrow
heavily from previous works on delegating authorization to control
channels [31], whereby a reference monitor can establish that mes-
sages received over a control channel in fact speak for a particular
principal. In our authorization framework, we apply the delegation
axioms as in Section 2.2.3 to establish that messages sent over the
secure control channel Cn represent the controller c acting on behalf
of principal n.
Determining whether the request is authorized. In this exam-
ple, P makes claim to perform set of actions (Treq): “P says
Treq ⊆W (P)”. The goal is to derive reference monitor’s authoriza-
tion policy PRM : “RM says Treq ⊆W (P)”. The reference monitor
grants the request if and only if PRM can be derived from P’s re-
quest, and other credentials available—using the axioms/inference
rules discussed in section 2.2. RM begins the derivation with the
ownership credentials which CAs provide to RM. These credentials
represent the formula, CA says “P owns FP”. The reference moni-
tor says that CA speaks for it: “RM says (CA→ RM)”; it combines
these two formulas to infer that, “RM says (P owns FP)”. Now, the
reference monitor will follow the principles that define the actions
a resource owner can perform to define TP : FP F

′
P. Applying the
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Goal Formulas Analysis

RM says Treq ⊆W (P)

CA says “P owns FP” TP := FP F
′

P
Treq ⊆ TP

RM says (CA→ RM)

Table 3: An example of deriving formulas using FLANC.

0 50 100 150 200 250

Time (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Case 1 Case 2

Figure 2: FLANC’s performance authorizing remote and third party re-
quests at SDX.

Action axiom, the reference monitor can derive:

(RM says (TP ⊆W (P)))

Now this can be combined with the analysis over Treq as:

(RM says (TP ⊆W (P)))∧ (Treq ⊆ TP)

to derive PRM : RM says (Treq ⊆W (P)). Table 3, shows how the
RM at SDX will use the available credentials to derive whether P
is authorized to redirect the attacked traffic to the Verisign.
Authorizing Third Party Requests at SDX. In the previous ex-
ample, Princeton can delegate the task to steer the attack traffic
to Verisign to a third party (TP) service using existing protocols
like DOTS [25]. In such a case SDX needs to determine whether
the flow-mod requests made by TP is authorized or not. The ref-
erence monitor will use the authorization policy provided by P to
determine the authorization of such third party requests.

4 Evaluation
We now demonstrate that using FLANC to authorize network con-
trol requests entails minimal performance overhead, thus demon-
strating that it can be deployed in operational settings. We specifi-
cally focus on performance of FLANC integrated with SDX autho-
rizing remote and third party requests.
Experiment Setup. All machines for the evaluation use a 64-bit
8-core 3.6 GHz processor. We use the syslog from the IPS box
deployed in Princeton University. The data has the log of all the
attack events between 21−27th October, 2015. During this period
we identified 159,231 high confidence and 393,660 low confidence
attack events.
Demonstrating FLANC’s Scalability Performance. In this ex-
periment we consider two cases: (1) P requests to block high-
confidence attacks and steer the low-confidence attacks to V ; and
(2) P delegates this task to a third party. This provides a more
realistic scenario where requests are made directly by the remote
IXP participants and third party service providers—delegated to
perform the network control task by the resource owners. In this
experiment, P expresses its authorization policy for delegation as

TT P: {dstip = PRFXP,dst port = ∗−{80,443}} {port =V}—
allowing steering of all the traffic destined to P except the Web
(HTTP and HTTPS) traffic. It sends this policy to the reference
monitor at the upstream SDX, where it is received and processed
by the event handler module. Figure 2 shows the cumulative dis-
tribution of time taken by the reference monitor to perform the
authorization task for the two cases. It takes longer to authorize
third party requests as the reference monitor has to perform an
additional intersection operation, TP ∩TT P compared to the oper-
ations shown in Table 3 for authorizing remote requests. In both
the cases the time required for authorization is a small fraction of
the time required to process an incoming flow-mod request by the
SDX controller—demonstrating that the performance overhead is
minimal.

5 Related Work
Lampson et al. [18] developed the original framework to reason
about credential-based authorization. Abadi et al. formalized a
logic based on this framework [3] and applied it in the Taos operat-
ing system [31]. Appel et al. [4] developed a high-order logic where
the principals (not the reference monitor) generated the proofs of
authorization. NAL [26] augmented the authorization logic pro-
posed in CDD [1, 2] by adding modes for restricted and conditional
delegations—enabling delegation of subset of credentials, and del-
egations dependent of system state respectively. FLANC adopts
many of the concepts from NAL, CDD, and Abadi’s earlier work,
extending the framework to operate on network flowspace. Net-
query [29] used NAL for developing a trusted knowledge plane
for federated networks such as the Internet. Netquery focuses on
establishing trust for the information that participating networks
share about network topology, configuration, and performance. In
contrast FLANC attempts to check the authorization of actions
rather than establishing trust between the participants. Similarly
the problems addressed by several other trust management sys-
tems [8, 16, 21, 32] are also orthogonal to the ones presented in
this paper.

Flowvisor [27, 28] delegates control to different entities by iso-
lating distinct portions of flow space; in contrast, authorization
policies are often more fine-grained and need not require complete
isolation. PANE [10] allows a single administrator to delegate
control to the end-users or applications. FLANC considers mul-
tiple resource owners delegating their control to other networks.
Bailey et al. [6] proposed to drop traffic for unauthorized paths
(with invalid RPKI state) at SDX directly. While similar in spirit
to FLANC, their solution is restricted to BGP and RPKI. Baldin et
al. [7] showed how to delegate resources such as bandwidth and
flow table rule space in multi-domain, multi-controller networks,
which is orthogonal to the problem of authorizing ownership and
delegation of network control. Fortnox [23] enforces security poli-
cies by prioritizing them over the conflicting policies from the
network control applications. Fortnox’s mechanisms for conflict
resolution may be useful in FLANC.

6 Conclusion and Future Work
To support scenarios where multiple parties need control over flow
table entries in a shared switch, such as at an IXP, we introduced
FLANC, an authorization logic for network control; developed
mechanisms for implementing this logic; and demonstrated the
expressiveness of FLANC by applying it to authorization problems
that arise in IXPs. FLANC extends existing authorization logics to
network control by incorporating actions and axioms concerning
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network flowspace. We integrated FLANC with SDX and showed
that it can supoort realistic authorization policies while introducing
only minimal overhead to flow table modification.

Our work thus far on FLANC creates many exciting possibili-
ties for future work concerning both network applications and the
logic itself. On the formal side, possible follow-on work might
involve proving the soundness of FLANC’s proof construction tech-
nique. Second, richer set of terms and connectives in the logic
may ultimately allow operators to express authorization policies
that concern aggregate statistics, operations on packet contents, and
better reasoning about authorization when packets in flowspace are
subject to a sequence of operations. On the more practical side,
we believe that FLANC’s logic and authorization framework may
very well apply to other domains, from multi-tenant data centers
to the Internet of Things. Finally, as FLANC is incrementally de-
ployable and can be incorporated into software defined networks as
well as conventional networks, exploring how to integrate FLANC
with both existing and “green field” networks offers many exciting
opportunities.
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