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Consider this example ISP network topology
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What is the ingress router for this packet arriving at router D?
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Which paths does the traf�c follow?
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Is traf�c load-balanced as expected?
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Is the latency acceptable?
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Are there losses?
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Fine-grained data-plane performance metrics require
packet-level visibility over individual �ows
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Fined-grained network monitoring is widely researched

⌅ No control over end hosts

⌅ Limited data-plane �exibility

⌅ Limited monitoring bandwidth

Gigascope [SIGMOD’��]

Planck [SIGCOMM’��]

Ever�ow [SIGCOMM’��]

Compiling Path Queries [NSDI’�6]

Trumpet [SIGCOMM’�6]

Marple [SIGCOMM’��]
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Stroboscope: Declarative Network Monitoring on a Budget

⌅ Collecting traf�c slices to monitor networks

⌅ Adhering to a monitoring budget

⌅ Using Stroboscope today



Consider the following �ow of packets
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Stroboscope activates mirroring for the �ow
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Packets are copied and encapsulated towards the collector
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The mirroring rule is deactivated after a preset delay
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Stroboscope stores the traf�c slice for analysis
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Stroboscope periodically toggles the mirroring rule
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Stroboscope collects multiples traf�c slices over time
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Analyzing matching packets across traf�c slices
enables �ne-grained measurements at scale

Forwarding paths discovery, timestamp reconstruction, payload inspection, . . .
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Stroboscope works with currently deployed routers

⌅ Most vendors provide traf�c mirroring and encapsulation primitives

⌅ The collector activates mirroring for a �ow by updating one ACL

⌅ Routers autonomously deactivate mirroring rules using timers

⌅ Traf�c slices can be as small as ��ms on our routers (Cisco C���8)

�



Stroboscope de�nes a declarative requirement language
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Stroboscope de�nes two types of queries
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MIRROR queries reconstruct the path taken by packets
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Fewer mirroring rules reduces bandwidth usage
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Too few mirroring rules creates ambiguity
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Stroboscope de�nes two types of queries
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CONFINE queries mirror packets leaving a con�nement region
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Fewer mirroring rules minimizes control-plane overhead
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The lower bound is a multi-terminal node cut

CONFINE �.�.�.�/�� ON [A B E C D]

A B C D

E U

VZW

X Y

�.�.�.�/��

U

X Y

V

U

Z

Edge Mirroring rule

��



The lower bound is a multi-terminal node cut

CONFINE �.�.�.�/�� ON [A B E C D]

A B C D

E U

VZW

X Y

�.�.�.�/��

U

X Y

V

U

Z

Edge Mirroring rule

The Surrounding algorithm minimizes mirroring rules and
guarantees to mirror any packet leaving the con�nement region

��



Stroboscope: Declarative Network Monitoring on a Budget

⌅ Collecting traf�c slices to monitor networks

⌅ Adhering to a monitoring budget

⌅ Using Stroboscope today



Stroboscope tracks the rate of mirrored traf�c in real time
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Measurement campaigns are stopped early
if the estimated demand are exceeded
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Exceeding the total budget schedules the query
once per measurement campaign
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Stable recorded traf�c rates are used for future estimations
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Stroboscope exceeds the monitoring budget for
at most one timeslot
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Stroboscope: Declarative Network Monitoring on a Budget

⌅ Traf�c slicing as a �rst-class
data-plane primitive

⌅ Strong guarantees on budget compliance
and measurement accuracy

⌅ Measurement analysis decoupled
from measurement collection
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Upon local failures, connectivity can be quickly restored
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Fast failure detection
using e.g., hardware-generated signals

Fast traffic rerouting
using e.g., Prefix Independent Convergence
or MPLS Fast Reroute



Upon remote failures, the only way to restore connectivity is
to wait for the Internet to converge
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… and the Internet converges very slowly*

*Holterbach et al. SWIFT: Predictive Fast Reroute
ACM SIGCOMM, 2017

Upon remote failures, the only way to restore connectivity is
to wait for the Internet to converge
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What about using data plane signals for fast rerouting?



TCP flows exhibit the same behavior upon failures
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TCP flows exhibit the same behavior upon failures

Retransmission timeout (RTO) 
 = SRTT + 4∗RTT_VAR
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TCP flows exhibit the same behavior upon failures
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TCP flows exhibit the same behavior upon failures
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When multiple flows experience the same failure  
the signal is a wave of retransmissions
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To detect failures, Blink looks at TCP retransmissions
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To detect failures, Blink looks at TCP retransmissions
Problem: TCP retransmissions can be unrelated to a failure (i.e., noise)
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Solution #1: Blink looks at consecutive packets 
with the same sequence number 



RTO: 200ms cwnd:4 pkts

S:4100

t

t + 200ms cwnd:1

cwnd:1

S:3100

S:2100

S:1000

A:1000

failure

exponential  
backoff

(=congestion window)

t + 600ms

…

…
…

…

t + 1400ms cwnd:1

S:500

source destination

S:1000

S:1000

S:1000

Retransmission timeout (RTO) 
 = SRTT + 4∗RTT_VAR

Solution #1: Blink looks at consecutive packets 
with the same sequence number 
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Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window
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Blink is intended to run in programmable switches
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Blink is intended to run in programmable switches
Problem: those switches have very limited resources



Solution #1: Blink focuses on the popular prefixes,
i.e., the ones that attract data traffic
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TCP flows

Traffic to a destination prefix

Solution #2: Blink monitors a sample of the active flows
for each monitored prefix

default 64 flows
monitored
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FAILURE

Blink infers a failure for a prefix when the majority of
the monitored flows experience retransmissions



We evaluated Blink failure inference using synthetic traces
following the traffic characteristics extracted from the real traces

We are interested in:

Accuracy: True Positive Rate vs False Positive Rate

Speed: How long does Blink take to infer failures
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Real traces ID

True Positive Rate

Blink failure inference accuracy is above 80% for 13 real traces out of 15
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Blink avoids incorrectly inferring failures when packet loss is below 4%

packet loss % 1 2 3 4 5 8 9
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Blink infers a failure within 1s for the majority of the cases

Real traces ID

Speed (s)



Outline

4.  Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2.  Blink infers more than 80% of the failures, often within 1s

3.  Blink quickly reroutes traffic to working backup paths

 46
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Upon detection of a failure, Blink immediately activates
backup paths pre-populated by the control-plane



Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues
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Problem: since the rerouting is done entirely in the data-plane,
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Solution: As for failures, Blink uses data-plane signals
to pick a working backup path
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lasts up to 1s

Solution: As for failures, Blink uses data-plane signals
to pick a working backup path



AS3 (backup #2)

AS2
(backup #1)

AS1 (primary)

Blink

destination

AS4

Solution: As for failures, Blink uses data-plane signals
to pick a working backup path



Outline

4.  Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2.  Blink infers more than 80% of the failures, often within 1s

3.  Blink quickly reroutes traffic to working backup paths
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Blink works on a Barefoot Tofino switch
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Blink works on a Barefoot Tofino switch
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1.1s

Blink works on a Barefoot Tofino switch
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and what to do with it…

Programmable network monitoring

Stroboscope Blink

fine-grained  
network monitoring

data-driven 

fast rerouting

[NSDI 2019][NSDI 2018]



Check our website for more results! 

https://nsg.ee.ethz.ch

https://nsg.ee.ethz.ch


and what to do with it…

Network monitoring at scale

Google Networking Summit

Laurent Vanbever

March 12 2019

nsg.ee.ethz.ch

 


