
HotSDN

Laurent Vanbever

HotSwap: Correct and Efficient Controller

Upgrades for Software-Defined Networks

vanbever@cs.princeton.edu

August, 16 2013

Joint work with

Joshua Reich, Theophilus Benson, Nate Foster and Jennifer Rexford

mailto:vanbever@cs.princeton.edu
mailto:vanbever@cs.princeton.edu

disruptive & incorrect

Today’s upgrades1

The HotSwap system

record, replay, swap

2

Scalability & correctness3

HotSwap: Correct and Efficient Controller

Upgrades for Software-Defined Networks

filter & specify

disruptive & incorrect

Today’s upgrades1

The HotSwap system

record, replay, swap

Scalability & correctness

HotSwap: Correct and Efficient Controller

Upgrades for Software-Defined Networks

filter & specify

As any piece of complex software,

SDN controller must be frequently upgraded

SDN controllers must be upgraded to

fix bugs

improve performance

deploy new features or applications

As any piece of complex software,

SDN controller must be frequently upgraded

7

33

Floodlight

Trema

15Ryu

Pox

commits# releases

3* 1349

897

2106

2670

source: GitHub

(over 2 years)SDN controller

* Pox uses branches instead of releases

As any piece of complex software,

SDN controller must be frequently upgraded

7

33

Floodlight

Trema

15Ryu

Pox

commits# releases

1 1349

897

2106

2670

source: GitHub

(over 2 years)SDN controller

How is it done today?

SDN controllers are usually upgraded

by rebooting the controller on the new version

SDN controllers are usually upgraded

by restarting the controller on the new version

During a controller restart, any

is ignored

network failure

rule timeout

diverted packet

SDN controllers are usually upgraded

by restarting the controller on the new version

After a restart, the controller

leading to losses and delays

resets all network forwarding state to prevent inconsistencies

recreates its state according to the current network traffic

leading to bugs

SDN controllers are usually upgraded

by rebooting the controller on the new version

After a reboot, the controller

leading to losses and delays

resets all network forwarding state to prevent inconsistencies

recreates its state according to the current network traffic

leading to bugs

Is it really a problem?

Restarting a controller can create

network-wide disruption

0 60

0

100

time (s)

probes

lost (%)

0 60

0

100

time (s)

probes

lost (%)

We stop the controller after 15 seconds

stop

15

0 60

0

100

time (s)

probes

lost (%)

We restart it controller after 20 seconds

stop restart

20

0
20

40
60

80
10

0

upgrade time (seconds)

%
 o

f p
ro

be
s

lo
st

0 5 10 20 30 40 50 60
0 6022 37

0

100

83

time (s)

probes

lost (%)

Soon after the controller restart, the network

suffered from important network-wide losses

stop restart

Restarting a controller can create bugs

Controller

Host 1

Internet

Host 2

10

05

H1 H2

H2 H1

fwd

fwd

Forwarding table

Let’s restart a controller running a stateful firewall

which only allows connection initiated from the inside

stateful
firewall

Controller

Host 1

Internet

Host 2

10

05

H1 H2

H2 H1

fwd

fwd

Forwarding table

stateful
firewall

Let’s restart a controller running a stateful firewall

which only allows connection initiated from the inside

Controller

Host 1

Internet

Host 2Forwarding table

10

05

H1 H2

H2 H1

fwd

fwd

Upon restart, the controller

wipes out all the forwarding entries

drop	 ALL

stateful
firewall

Controller

Host 1

Internet

Host 2Forwarding table

Upon restart, the controller

wipes out all the forwarding entries

stateful
firewall

Controller

Host 1

Internet

Host 2Forwarding table

Ongoing flows for which externally originated packets

are received first will get dropped by the controller

stateful
firewall

Controller

Host 1

Internet

Host 2Forwarding table

15 H2 H1 drop

stateful
firewall

Ongoing flows for which externally originated packets

are received first will get dropped by the controller

Ongoing flows for which externally originated packets

are received first will get dropped by the controller

Controller

Host 1

Internet

Host 2Forwarding table

15 H2 H1 drop

stateful
firewall

Restarting the controller can cause

allowed traffic to be blocked

Ongoing flows for which externally originated packets

are received first will get dropped by the controller

Controller

Host 1

Internet

Host 2Forwarding table

15 H2 H1 drop

stateful
firewall

Restarting the controller can also cause

forbidden traffic to be allowed

disruptive & incorrect

Today’s upgrades

The HotSwap system

record, replay, swap

2

Scalability & correctness

filter & specify

HotSwap: Correct and Efficient Controller

Upgrades for Software-Defined Networks

Keeping as much traffic in the network

avoiding network-wide disruptions

Recreate state in the upgraded controller

in a controlled fashion, guaranteeing correctness

Tolerating different control and forwarding behavior

between the new and old controller

HotSwap warms up the upgraded controller

before giving it control over the network

OpenFlow messages

Network

v1 SDN Controller

HotSwap

HotSwap is a hypervisor that sits

between the network and the controller

Network

v1

Network

v1

HotSwap

HotSwap proceeds in four stages:

record, replay, compare & replace

Network State

HotSwap

In the record stage,

HotSwap maintains a copy of the network state

Network Events

Network

v1

Forwarding Rules v1

v2

HotSwap

When an upgrade is initiated,

HotSwap sets the upgraded controller as slave

Master Slave Only the master controller

can write to the network

Network

v1

v2 Network State

Network Events

Forwarding Rules v1

HotSwap then replays the recorded network events

against the upgraded controller

Master Slave

Network

v1

HotSwap

Network State

Forwarding Rules v1

Forwarding Rules v2

Network Events

During the replay, HotSwap records the

forwarding rules generated by the upgraded controller

v2

Master Slave

Network

v1

HotSwap

v2

HotSwap

Network State

Forwarding Rules v1

Forwarding Rules v2

Network Events

Once the replay is completed, HotSwap computes

the deltas between the initial and upgraded rules

Δ

Master Slave

Network

v1

v2

HotSwap

Network State

Forwarding Rules v2

Network Events

In the replace stage, HotSwap sets the upgraded

controller as master and installs the deltas

Forwarding Rules v1
Δ

MasterSlave

Network

v1

v2

HotSwap

HotSwap finally removes the initial controller

and re-enters the record stage

Network State

Network Events

Forwarding Rules v2

Master

Network

HotSwap performs upgrade

in a disruption-free manner

0
20

40
60

80
10

0

upgrade time (seconds)

%
 o

f p
ro

be
s

lo
st

0 5 10 20 30 40 50 60
0 60

0

100

time (s)

probes

lost (%)

Using HotSwap,

not a single packet is lost during the upgrade

HotSwap

Restart

disruptive & incorrect

Today’s upgrades

The HotSwap system

record, replay, swap

Scalability & correctness

filter & specify

3

HotSwap: Correct and Efficient Controller

Upgrades for Software-Defined Networks

Recording all network events does not scale

Recording all network events does not scale

... but is not needed!

Most stateful controllers only

require some events to be replayed

Yes

No

Last History

Event dependency

Network-Traffic

Dependency

The number and type of events to be recorded

depend on the controller category ...

Yes

No

Last History

Event dependency

Network-Traffic

Dependency

... whether their state depend on

the actual traffic being exchanged

Yes

No

Last History

Event dependency

Network-Traffic

Dependency

... whether their state depend on

the last network event or on an history of events

Learning-Switch

Shortest-Path
Routing

Reliable
Routing

Stateful
Firewall

Yes

No

Network-Traffic

Dependency

Last History

Event dependency

Learning-Switch

Shortest-Path
Routing

Reliable
Routing

Stateful
Firewall

Yes

No

Network-Traffic

Dependent

Last History

Event dependency

HotSwap provides a query language

to filter stream of events at record and replay time

What does it mean for an upgrade to be correct?

When we upgrade from v1 to v2,

We would like the network to behave

as if v2 had been running since the

beginning

What does it mean?

When we upgrade from v1 to v2,

We would like the network to behave

as if v2 had been running since the

beginning

same forwarding rules?

same forwarding semantic?

eventual semantic consistency?

What does it mean?

When we upgrade from v1 to v2,

We would like the network to behave

as if v2 had been running since the

beginning

same forwarding rules?

same forwarding semantic?

eventual semantic consistency?

It depends ...

same forwarding rules?

same forwarding semantic?

eventual semantic consistency?

=

≅

The operator defines a relation that captures the

acceptable differences on the controller outputs

HotSwap verifies if the desired correctness criteria

is met before swapping controllers

disruptive & incorrect

Today’s upgrades

The HotSwap system

record, replay, swap

Scalability & correctness

query language

HotSwap: Correct and Efficient Controller

Upgrades for Software-Defined Networks

HotSwap enables disruption-free

and correct SDN controller upgrade

no assumption on the controller or on the application

first implementation on top of FlowVisor

minimum input from the network operator

HotSwap

works in practice

is highly general

is easy to use

HotSDN

Laurent Vanbever

HotSwap: Correct and Efficient Controller

Upgrades for Software-Defined Networks

August, 16 2013

Joint work with

Joshua Reich, Theophilus Benson, Nate Foster and Jennifer Rexford

www.vanbever.eu

http://www.vanbever.eu
http://www.vanbever.eu

