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As any piece of complex software,

SDN controller must be frequently upgraded

SDN controllers must be upgraded to

fix bugs

improve performance

deploy new features or applications
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How is it done today?
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network failure

rule timeout

diverted packet
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SDN controllers are usually upgraded

by rebooting the controller on the new version

After a reboot, the controller

leading to losses and delays

resets all network forwarding state to prevent inconsistencies

recreates its state according to the current network traffic

leading to bugs

Is it really a problem?



Restarting a controller can create

network-wide disruption
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Soon after the controller restart, the network 

suffered from important network-wide losses

stop restart



Restarting a controller can create bugs
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allowed traffic to be blocked



Ongoing flows for which externally originated packets

are received first will get dropped by the controller 

Controller

Host 1

Internet

Host 2Forwarding table

15 H2 H1 drop

stateful
firewall

Restarting the controller can also cause 

forbidden traffic to be allowed
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Keeping as much traffic in the network

avoiding network-wide disruptions

Recreate state in the upgraded controller

in a controlled fashion, guaranteeing correctness

Tolerating different control and forwarding behavior

between the new and old controller

HotSwap warms up the upgraded controller

before giving it control over the network



OpenFlow messages

Network

v1 SDN Controller



HotSwap

HotSwap is a hypervisor that sits

between the network and the controller

Network

v1



Network

v1

HotSwap

HotSwap proceeds in four stages: 

record, replay, compare & replace



Network State

HotSwap

In the record stage, 

HotSwap maintains a copy of the network state

Network Events

Network

v1

Forwarding Rules v1



v2

HotSwap

When an upgrade is initiated, 

HotSwap sets the upgraded controller as slave

Master Slave Only the master controller

can write to the network

Network

v1



v2 Network State

Network Events

Forwarding Rules v1

HotSwap then replays the recorded network events

against the upgraded controller

Master Slave

Network

v1

HotSwap



Network State

Forwarding Rules v1

Forwarding Rules v2

Network Events

During the replay, HotSwap records the 

forwarding rules generated by the upgraded controller
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v2

HotSwap

Network State

Forwarding Rules v1

Forwarding Rules v2

Network Events

Once the replay is completed, HotSwap computes

the deltas between the initial and upgraded rules

Δ

Master Slave

Network

v1



v2

HotSwap

Network State

Forwarding Rules v2

Network Events

In the replace stage, HotSwap sets the upgraded

controller as master and installs the deltas

Forwarding Rules v1
Δ

MasterSlave

Network

v1



v2

HotSwap

HotSwap finally removes the initial controller

and re-enters the record stage

Network State

Network Events

Forwarding Rules v2

Master

Network



HotSwap performs upgrade

in a disruption-free manner
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Using HotSwap, 

not a single packet is lost during the upgrade

HotSwap

Restart
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Recording all network events does not scale



Recording all network events does not scale

... but is not needed!



Most stateful controllers only

require some events to be replayed
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The number and type of events to be recorded

depend on the controller category ...
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the actual traffic being exchanged



Yes
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Last History

Event dependency

Network-Traffic

Dependency

... whether their state depend on 

the last network event or on an history of events
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HotSwap provides a query language

to filter stream of events at record and replay time



What does it mean for an upgrade to be correct?
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same forwarding rules?

same forwarding semantic?
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It depends ...



same forwarding rules?

same forwarding semantic?

eventual semantic consistency?

=

≅

The operator defines a relation that captures the 

acceptable differences on the controller outputs 

HotSwap verifies if the desired correctness criteria

is met before swapping controllers
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HotSwap enables disruption-free 

and correct SDN controller upgrade

no assumption on the controller or on the application

first implementation on top of FlowVisor

minimum input from the network operator

HotSwap

works in practice

is highly general

is easy to use
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