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Introduction

Software-Defined Networking (SDN) promises to significantly improve network manageability by enabling direct, and cen-
tralized control over the network forwarding state via a well-defined Application Programming Interface (API). Fulfilling this
promise though is a challenge for network operators as it often requires heavy modifications to their current network architec-
ture, including: i) equipment upgrades, as the vast majority of the installed base of network equipments (e.g., routers) do not
support SDN protocols; ii) new management, monitoring and provisioning systems; but also iii) the need for operators training
as managing and debugging a SDN network requires essentially completely different skill sets.

In this short paper, we present a lightweight SDN solution that does not require any new network equipment, nor SDN-
specific protocols. While it is less expressive than OpenFlow-based SDN, our solution is powerful enough to fulfill complex
traffic engineering requirements (e.g., traffic steering through middleboxes, load-balancing) that are hardly achieved in traditional,
configuration-based, networks. Moreover, by minimizing SDN inertial factors and simplifying the management interface exposed
to network operators, our lightweight SDN model can provide significant incentives to bootstrap the transition towards SDN [5].

The core of our solution consists of a flexible and vendor-independent API for SDN controllers that works on top of existing
networks. Just as OpenFlow enables to program forwarding entries in a SDN switch, our API enables to program forwarding
entries in a commercial device such as any Cisco or Juniper router. That API can then be used by a SDN controller such as
Floodlight or POX to program the forwarding paths to be used across a traditional network, just as in any other SDN.

We argue that routing protocols are good candidates to realize such an API, since they: i) are standardized as routers must
interoperate, even if they are from different vendors; ii) have well-defined behaviors (e.g., shortest-path routing); and iii) have
been used for years by network operators who now have a good mental model of how they behave.

At a high-level, a router running a routing protocol takes routing messages as input and computes forwarding paths as output.
A routing protocol can therefore be seen as a function from routing messages to forwarding paths. Such functions are standardized
and well-known. Given a forwarding entry to be implemented on a node (i.e., the output) and the set of protocols (i.e., functions)
running on that node, the runtime implementing our API automatically computes the routing message (i.e., the input) that, when
presented to the node, makes it compute the required entry. Doing so, our runtime inverts the function implemented by the router.

In addition to enable SDN functionalities in todays’ networks, controlling routing protocols provides an effective and powerful
way to accommodate incremental transitions towards SDN. Indeed, by using our API along with OpenFlow, a SDN controller can
program both legacy devices and SDN-enabled equipment. This contrasts with other works on partial SDN deployment (e.g., [2])
that provide SDN functionalities on SDN-enabled devices only.

In the following, we provide more details on how our runtime translates forwarding paths into routing protocols messages.
Due to space constraints, we focus on one particular application: centralized traffic engineering which is often used as a motivation
to deploy SDN [1]. We also focus on one family of intradomain routing protocols: Link-State Interior Gateway Protocols (LS
IGPs), as they are used in the vast majority of the networks and are easy to understand since they rely on shortest-path routing.
Our approach though generalizes to other routing protocols (including interdomain protocols such as BGP) and forwarding
mechanisms (e.g., MPLS). While relying on routing protocols restricts programmability to destination-based forwarding, our
runtime is powerful enough to arbitrarily: i) avoid given nodes or links to ensure absence of congestion, ii) steer traffic through
middleboxes, iii) load-balance traffic on multiple path for specific destinations, and iv) pre-provision backup paths. We also want
to stress that our runtime is more flexible and efficient than simply provisioning static routes. Indeed, by carefully crafting routing
messages, our runtime can adapt the forwarding behavior of many devices at once, in a predictable way, without preventing them
from converging on their own. In a sense, the runtime only computes the routing input centrally, but the computation of the
forwarding paths is still being performed by the routers—in a distributed manner.

Enabling SDN-like fine-grained traffic-engineering in old school networks

To program routers forwarding table, our runtime leverages the ability of augmenting the IGP topology with: virtual nodes, virtual
links (with arbitrary weights), and virtual destinations (announced by virtual nodes). This virtual topology is computed in such
a way that, when presented to the routers, some of them adapt the way they forward the traffic in a given, and predictable way.
In particular, augmenting the topology enables the runtime to steer traffic away from any router in the network (e.g. by adding a
virtual node announcing an existing destination with a small weight) and bring it to any of its neighboring router. To realize this
in practice, we assume that our runtime establishes routing adjacencies with all network devices. Such a requirement is easily
achieved as most equipments are usually connected to a shared out-of-band management network to simplify management task.
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Fig. 1: Lightweight SDN enables fine-grained traffic engineering
in existing networks using virtual topology. In this example, it
enables to move the traffic sent towards D1 by C to A by adding
a virtual node v1.

We now show an example in which our runtime is used to
enable per-destination traffic engineering (see Fig. 1). Assume
that, starting from the configuration depicted on the left, the
link between C and D starts to be congested. To address this
issue, the operator (or the SDN controller) may want to par-
tially redirect traffic from C, e.g., sacrificing delay optimality
for non-critical traffic towards D1 while keeping performance
optimality for the red flows directed to D2 (cf. middle part).
This simple requirement is impossible to achieve in a pure IGP
network, because both destinations are attached to D hence
the shortest paths from C either i) traverses (C,D) for both
destinations, or ii) do not traverse the link for neither of them.

The right part of Fig. 1 shows how our runtime achieve
the desired forwarding behavior, by “faking” the IGP topology
presented to the routers. In this case, our runtime pretends that
a fake node v1 is connected to A and C with a weight of 10
(resp. 1) towards A (resp. C), by injecting well-crafted IGP
packets [3]. v1 also advertises that it can reach D1. Immediately after the introduction of v1, C starts to use v1 to reach D1.
Indeed, the cost to reach v1 (1) is smaller than D (3). In practice, v1 is “mapped” to the link (C,A) in such a way that any packet
directed to it from C is sent to A. A then forwards packets to B according to its own shortest-path. Observe that, in this example,
C is the only router to change its forwarding path.

While similar results can be obtained today using well-known traffic engineering technologies (e.g., MPLS RSVP-TE), they
require end-to-end signaling which can make them extremely slow to converge [1]. In contrast, our solution is centralized and
does not require any signaling or device configuration.

Lightweight SDN in practice
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Fig. 2: Lightweight SDN Runtime workflow.

Our runtime takes path requirements as input and automatically
computes the augmented IGP topology. Similarly to [4], our path
requirement language is based on regular expressions. For instance,
a SDN controller would be able to adapt the forwarding in Fig. 1
by specifying this simple path requirement: [C, A, ∗, D1]. Our path
requirement language also supports higher-level operators such as
ECMP (p1, . . . , pn) which, given a list of paths p1, . . . , pn with
the same source s and destination d, load-balance the traffic on all
of them; and backup(pa, pb) which automatically provisions pb as
a backup path for pa in case of failure.

Fig. 2 summarizes the workflow implemented by our runtime
system. Starting from the physical topology and the paths require-
ments, an Integer Linear Program computes the smallest augmented
topology that realizes all the requirements. Indeed, as shortest-path
algorithms scale with the numbers of links and nodes in the net-
work, we want the minimize the size of topology presented to the
routers. While we are using an Integer Linear Program to compute the topology, we also have a polynomial-time algorithm that
enables to compute an unoptimized virtual topology. This algorithm could be used after a convergence event such as a link failure
to adapt the virtual topology in a timely fashion, while the more costly optimization algorithm can be run at a lower frequency.

Using IGP to encode paths is powerful. Actually, our runtime can make routers forward along any set of paths, provided that
they are not contradictory. Contradictory paths include: i) paths with loops (e.g., [RA, RB, RA]) or ii) inconsistent paths (e.g.
[RA, RB, RC] and [RB, RA, RC]).
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