Concise Paper: In-Band Update for Network Routing Policy Migration

Shuyuan Zhang™*, Sharad Malik*, Sanjai Narain', Laurent Vanbever*
* Princeton University, {shuyuanz, vanbever, sharad @princeton.edu}
t Applied Communication Sciences, {snarain@appcomsci.com}

Abstract—Network operators often need to change their
routing policy in response to network failures, new load
balancing strategies, or stricter security requirements. While
several recent works have aimed at solving this problem, they
all assume that a fast and conveniently dimensioned out-of-
band network is available to communicate with any device.
Unfortunately, such a parallel network is often not practical.
This paper presents a technique for performing such updates
in-band: it enables reconfiguration control messages to be sent
directly within the fast production network. Performing such
updates is hard because intermediate configurations can lock
out the controller from devices before they are updated. Thus,
updates have to be carefully sequenced. Our technique also
minimizes the total update time by updating the network in
parallel, whenever possible. Our technique takes into account
in-band middleboxes, such as firewalls. We have implemented
our framework using Integer Linear Programming, and exper-
imentally validated it on problems of realistic scale.’

Keywords-Software-Defined Networks; Routing Policy Mi-
gration; Network Update; In Band Update; Configuration

I. INTRODUCTION

Network policy migration occurs frequently. For instance,
network operators may want to adapt their routing policy
because of new traffic characteristics (e.g., upon a surge in
popularity of a hosted content). They may also want to re-
configure their traffic engineering policy to optimize the net-
work bandwidth. Alternatively, newer security requirements
may force them to redirect all ingress traffic to middleboxes
such as firewalls or intrusion detection agents. Due to the
frequency of these events—more than one per day in large
networks [1]—it is crucial for routing policies to be migrated
(i) without bringing down the entire network and (ii) without
impacting service availability.

Recently, there has been a lot of work on network updates
in the context of both traditional (e.g, [1], [2]) and Software-
Defined Networks (SDN) (e.g., [3], [4], [5], [6]). However,
all the current solutions have assumed that a fast and dedi-
cated out-of-band (OOB) network was available. Performing
updates using an OOB network is easy because bi-directional
connectivity between the controller (or the network manage-
ment system) and the forwarding equipment is guaranteed

IThis work has been funded by Air Force Research Laboratory under
contract FA8750-13-C-0030. Approved for Public Release; Distribution
Unlimited: 88ABW-2014-3771 20140814. This work was supported in part
by C-FAR, one of the six SRC STARnet Centers, sponsored by MARCO
and DARPA.

/978-1-4799-6204-4/14$31.00 (©2014 IEEE

at all time. This assumption makes sense in the context
of traditional networks where control messages are usually
small, consisting of few configuration lines. However, this
assumption does not hold in the context of SDN where the
content of the forwarding tables themselves, each of them
containing potentially thousands of forwarding rules, has to
be exchanged over the OOB network. In-band networks are
usually much faster than OOB (for obvious cost reasons)
and the management of the OOB network is often difficult
because of the extra wiring. Therefore, there is significant
incentive to be able to perform updates in-band in the context
of SDN. While performing OOB updates correctly is known
to be hard [2], performing in-band updates correctly is
even more challenging for at least two reasons. First, in-
band updates require to maintain network-wide consistency
in addition to bi-directional communication between the
controller and any forwarding equipment at all time. Second,
as control messages are sent on the production network
directly, in-band updates also need to take into consideration
in-path middleboxes that could drop them unexpectedly.

In this work, we present a general in-band reconfiguration
framework that addresses both concerns. We make the
following contributions:

1) We introduce and formally define the in-band network
update problem. Our approach applies to both tradi-
tional and SDN networks, but focuses on the latter.

2) We present an Integer Linear Programming (ILP)
based symbolic modeling of the network that can
handle general forwarding devices such as routers,
switches, and access control devices such as firewalls.

3) We show how we can compute a valid update ordering
of the switches that can successfully migrate the
network; or determine that no such solution exists.

4) We show how to maintain full bi-directional connectiv-
ity between the controller and the forwarding devices.

5) We show how we minimize the time it takes to per-
form the update by simultaneously updating multiple
devices whenever possible.

The rest of the paper is organized as follows. §II demon-
strates the challenges of in-band updates with a simple
example. §III defines and formulates the in-band update
problem. §IV describes our reconfiguration approach. §V
demonstrates the scalability and effectiveness of the ap-
proach via experimental results. Finally, §VI provides a
comparison with related work and §VII, concluding remarks.

1€ Dst: A—Port 1
Dst: C—Port 1
&
S
3
Controller
Dst: B—Port 2 Dst: A—Port 1
Dst: C—Port 3 st
Dst: B—~Port 1
C
Figure 1. Example: Routing State 1
Dst: A—Port 1
Dst: C—Port 2
Dst: B—~Port 3 Dst: A—Port 1
Dst: C—Port 2 ¢ Dst: B—Port 2

Figure 2. Example: Routing State 2

II. MOTIVATING EXAMPLE

In this section, we walk through a small example to
demonstrate why in-band network update is difficult. Con-
sider the network shown in Figure 1 composed of a manage-
ment unit, which we call a controller, and three forwarding
devices (i.e., SDN switches or IP routers). The controller is
in charge of setting up the forwarding entries in each device.
It also initializes and manages the entire update process.
Initially, the controller reaches B or C in one-hop, via A.
Likewise, packets between B and C go through A. Now
assume the network operator adds a firewall, D, configured
to act as a Deep Packet Inspection (DPI) device, between B
and C (Figure 2) and she wants to force all network traffic
to traverse the firewall. To make the forwarding action as
simple as possible, the operator configures the firewall to
forward all packets that arrived at port 1 to port 2 and vice
versa. Another solution would be to configure the firewall
to forward whatever traffic it receives to the same port it
came from. This however would make forwarding decision
at B and C more difficult as they would have to consider the
ingress port of the packets in addition to the destination to
avoid forwarding loops. After the update, device A forwards
packets destined to C to port 2 and packets destined to B
to port 3. B will have one entry in the routing table to
route packets to C to port 2 and similarly for device C.
The question is how to update the network from the initial
to the final routing state, using only the in-band network.

A strawman approach is to update the devices according to
their relative distance to the controller. For instance, update
the devices that are directly connected to the controller first,
then the ones located one-hop away, etc. In this case, the
controller would first update the forwarding table on A.
Doing so, A will start forwarding packets destined to C to

port 2 and packets destined to B to port 3. However, B and
C have not been updated yet, and when B (resp. C) receives
a packet destined to C (resp. B), it will send it back to A.
Hence, packets will get stuck in a forwarding loop. This loop
is permanent and renders B and C completely isolated from
the controller. Restoring controller-to-device connectivity
requires the network operators to manually reconfigure the
forwarding tables on B and C (using a physical interface
such as a serial port). Another solution would be to update
devices located further first, and work backwards towards
the controller. Again, this strategy does not guarantee that
the controller will be able to reach all equipment. As an
illustration, consider the opposite migration in which the
network is updated from the final state (Figure 2) to the
initial one (Figure 1). If B is updated first, C is no longer
reachable from the controller until A is updated. However,
if we update A before B and C, the controller can reach all
devices during the entire updating process.

As we can see from this example, an ill-designed updating
sequence could lead to permanent unreachability problems.
Moreover, in this example the firewall only inspects the
packets (for simplicity). In real networks, the presence of
firewalls would complicate the update order even further as
they could block packets in the middle of the migration.

III. PROBLEM DEFINITION

In this work, we define the network as a controller, a set
of switches, and their connecting links. The controller is
the management unit in traditional networks that initiates
the update or the centralized controller in SDN. In this
work, both forwarding devices and access control devices
are called switches (denoted as S; with 4 being its unique
ID) and they are connected by links. The routing behavior
of each switch is completely determined by its policy. For
forwarding devices, such policy can be extracted from the
Forwarding Information Base in routers or IP Routing Table
in Linux kernel-based routing devices. For firewalls, such
policy can be the ACL table. The policy is denoted as Q}
or ?. The superscript is used to indicate the version of
the policy. We assume an atomic update from Q' to @2, as
supported by modern routers [7]. The policy can be a priority
based routing table as in SDN or an IP prefix based routing
table as in traditional networks as long as the policy can
determine a specific routing decision based on the incoming
packets. Since the update can be implemented round by
round, we use P; to represent in which round switch S;
shall be updated. For example, if P, = 3, the controller
should update S; in the third round. If two devices have the
same value of their update indices, they are updated in the
same round. A round need not be updated atomically, i.e.,
the switches in a round can be updated independently.

The in-band network update problem is defined as fol-
lows:

Approved for Public Release; Distribution Unlimited: 88ABW-2014-3771 20140814.

Problem 1. Given two routing configurations of the network
{QL} and {Q?}, find a partial order “<” of the switch
update indices such that VS;, S; is reachable from the
controller using the in-band network if VS; : P; < P; have
been updated from Q; to Q?; or prove that no such partial
order exists.

Optionally, we can define a stronger network update
problem by enforcing a two-way connectivity, such as “V.S;,
S; is reachable from the controller for both directions during
the update.” This will be useful for TCP messages.

The reason why it is a partial order is that it is possible to
have two switches which do not share any switches in their
update routes, meaning that their update order does not affect
the reachability to each other. Therefore, we can cluster such
updates together to achieve simultaneous updates when two
switches have no relative ordering constraints. The specific
actions needed to update from Q} to @7 can be flexible and
dependent on the scenario.

IV. SOLUTION

In this section, we discuss how to solve the in-band update
problem using an ILP formulation. First, we explain the
reason why we formulate the problem as a constraint satis-
faction formulation and more specifically an ILP problem.
After that, we will provide an overview of our approach and
the encoding details.

A. Intuition

Our work is based on the the following observation: in
order to update switch S;, the controller has to establish
a route destined to the switch. This route may have a set
of switches X that have been updated to Q2? with the
rest of switches Y not updated. In order for this route to
be successfully established, we have to update X before
updating S; and update Y after we update 5;, i.e.,

VSjEX:Pj<PiandVSk€Y:Pi<Pk (1)

This constraint is the foundation of our work to find a valid
ordering among all the switches and thus our work is based
on the satisfaction of a set of order constraints. These order
constraints can easily fit into a constraint satisfaction based
formulation. As the P; are integer variables, and thus it is
natural to consider formulating the constraint satisfaction
problem as an ILP problem. Further, since X and Y are not
known beforehand, our method has to consider all possible
cases for X and Y and we use a symbolic encoding for
the network to accomplish this. If there are firewalls in the
network, our approach has to either bypass the firewalls, i.e.
there is no firewall on the route, or make sure that firewalls
do not block the packets. We now show how the symbolic
encoding of the network and the order constraints can be
modeled as linear constraints in an ILP formulation.

Table I
ENCODING VARIABLES

U;’;k To indicate if ingress link k at S; is on the route
from the controller to S;

Uf?‘tk Similar to v;’} & but for the egress link k at S;

vff;-’ To indicate if switch S; is on the route from the
controller to S;

vﬁ?”w” To represent which version of the routing policy

is used to find the route to switch S;

H; ; The forwarding variable for S; to update S;

T; The network encoding variable to find the route to S;

out —
Controller vout, = ,,g,“_'//4 ‘\v:“ =wiy =1
VCConmoller 1= VCA Ay 1 \

Network Model

/ﬂ

Figure 3.

B. Overview

As mentioned in the previous subsection, we need to
determine if we can successfully establish a valid route
from the controller to the switches. In real networks, there
may be a large number of such routes. In order to consider
all possible routes, we present an ILP-based modeling that
symbolically encodes the network. We then add constraints
to this symbolic network model so that we can find a valid
route that satisfies the ordering constraint. For each S; that
needs to be updated, we have one symbolic representation
of the entire network, which is used to find the valid route
from the controller to that switch. For example, if there are 3
switches to be updated, we conjunct 3 encodings of the entire
network together. The variables in one encoding are disjoint
with the variables in the other except the update index
variables P;, which bridge all encodings together by forcing
the global ordering constraint described in Equation 1.

The symbolic encoding has two parts, one for network
encoding and the other for constraint encoding. The net-
work encoding, represented as 7;, specifies the forwarding
function of the network. The constraint encoding captures
the ordering constraint 1 and other constraints.

Next, we explain the specific details of the encoding.
Many logical operations (A, V,=>) are used in the formu-
lation and these can be converted to linear constraints using
known transformations [8].

C. Network Encoding

The set of variables used in the encoding is listed in
Table I and the set of constraints is listed in Table II
Although switches are connected by bidirectional links, for
the convenience of symbolic encoding, each bi-directional
link is replaced by a pair of unidirectional links as shown in

Approved for Public Release; Distribution Unlimited: 88ABW-2014-3771 20140814.

Table II
NETWORK ENCODING

T sSw _—_ e
R vl =V

2 .. — g SwW out out
R Hz,a—vui(ml/\/\k;élﬂ” %)
3 R T
R Hig = N\ 0755
4 L= sw version out out
R H;,; = ((pw A wPg) = (vi,j,l1 A Nzt —m”‘k)>

((vsw A ,U'ue'rszon) = (‘ J 12 A /\k;ﬁl2 ,j,tk))

Figure 3. Each unidirectional ingress/egress link is encoded
as one binary variable (’UZ %k or vf‘;tk as shown in Table I) to
indicate if this link is on the route from the controller to the
destination switch. As shown in Figure 3, the highlighted
links are those from the variables assigned to 1. These form
a route to the switch that we need to update, which in this
case is C. These variables are not shared among different
encodings of the networks. For example, v{"; ;. which is
used to find a route to Sy, is a different variable from v2 ko
which is used for finding the route to Ss. Since the ingress
link of a switch must be an egress link of the adjacent switch,
vk = v{”l‘tm if the ingress link k of S is connected to the
egress link m of S;. vj'% is used to indicate if switch Sj is
on the route to .S;. A switch is on the route if and only if at
least one of its ingress links is on the route (R! in Table II).

The switch function is to express which egress ports shall
be on the route based on the routing decision. For example,
let us consider the symbolic encoding to update S;. Assume
the controller uses packet pkt to communicate with .S; and
the routing policy at S;(S; # S;) forwards pkt to port I. In
the encoding to find a route to S;, the routing function for
S; is shown in R? of Table II, meaning that if S; is on the
route, the egress port [also has to be on the route. If the
switch happens to be a firewall and it may block the packets,
the function used is R of Table II. If the firewall permits the
packet, the firewall is the same as a switch. As we can see,
firewalls are not treated differently from normal switches
and hence can be easily included in the framework. In many
cases, the switch may have two versions of routing decisions
based on either Q} or Qf We use another symbolic Boolean
variable v}%"**°" to encode which action to use. Assume Q]
forwards pkt to port I' while Q7 forwards to [%. If v}§™**"™ is
0, S; forwards to I'; otherwise, to [?. Then, the function used
for S; is R* in Table II. The final network encoding variable
isT; =\ ; Hij and it represents the complete forwarding
behavior of the network to update S;. Finally, we constrain
/\; T; to be 1 all the time.

D. Constraint Encoding

The network encoding provides a generic encoding for the
network forwarding functionality. However, without further
constraints, just satisfying the encoding constraints will not
produce meaningful results. In this subsection, we explain
how to use constraints to further restrict the solution space.

1) Switch Constraint:

« First, we have to ensure that exactly one egress port of
the controller has to be on the route because we want
the route to have only one source port. This can be
expressed as Zk vy, com‘roller k =1L

« Further, the controller’s ingress link shall not be on the
path; otherwise, there will be a loop in the route with
the controller in it. We use), v =0to
express that.

o At least one ingress port of the destination switch has
to be on the route and this guarantees a route with valid
destination: »_, v}", > 0. This constraint guarantees
that if there are firewalls on the route, they do not block
the control packets.

o In the end, we have to ensure that no switch has more
than two ingresses on the route. This constraint will
guarantee a simple loopless route [9]. This can be
expressed as A (D, vj’;k < 2)).

2) Update Order Constraint: Equation 1 has to be cap-
tured in the constraint formula and it can be easily expressed
using vVeTson and v, If v”jrs“’” = 0 and v“j” =1,
S; is on the route to update S; and it uses Qj as the
forwarding policy. This means that S; is updated later than
S; and thus P; < P;. Similarly, if both U”?”S“’" and vsfj”
are 1, S; is on the route and it uses Q? as the forwarding
policy and thus P; > P;. Overall, the formula to capture the
update order constraint is (v;¥ A =05 = (P; < Pj)) A
(CHAA vﬁ?rg@on = (P, > P;))

mn
i,controller,k

E. Optimization

Using the constraints expressed in the network encoding
and the constraint encoding, we are able to find a sequence of
P; values if one exists. These values provide a valid ordering
of the switch update. As mentioned in Section III, since
the update order is a partial order, there may exist some
update order indices that have the same value, meaning we
could update those switches simultaneously. Usually, it is
preferable to update the network as fast as possible i.e., using
as few update rounds as possible. However, the solution
returned by the ILP solver does not reflect this. One solution
is to let the ILP solver minimize max{P;}. We set an upper
bound for each P; to P“PPe" (Vi : P; < PY“PP°T) and let the
solver minimize the upper bound P“PP¢". Depending on how
PYPPeT is constrained, it may be possible that the solver does
not return any results in a reasonable amount of time. This
will likely happen when P“PP¢" is not too tight or too loose
a constraint. The former may be easy to determine as being
infeasible and the later may be easy to satisfy. To deal with
this, we can set a time limit for each run and we can regard
time-outs as “Infeasible” cases. Thus, we get a result that
may not be the minimum number of rounds, but possibly
very close to it. We refer to this solution as the “minimal”
solution to distinguish it from the minimum one.

Approved for Public Release; Distribution Unlimited: 88ABW-2014-3771 20140814.

FE Two-Way Communication

In the formulation mentioned in the previous subsections,
we only considered the communication from the controller
to the switch. In many cases, after the switch updates to
its new routing policy, it may send reply messages back to
the controller to mark the end of the update; otherwise, the
controller will not know when the update is completed. In
order to include such “two-way” communication, we can add
another version of the symbolic encoding for each update
switch and this encoding tries to find a valid route from the
update switches to the controller. Almost everything is the
same as the previous network encoding except that we need
to reverse the constraint on the ingress and egress links of
the controller and the update switch. We specify that at least
one of the egress links of the update switch and exactly one
of the controller’s ingress links are on the route.

V. EXPERIMENTAL RESULTS

We implemented our ILP based approach using IBM
CPLEX as the underlying ILP solver [10] with at most
7 threads enabled. We ran a variety of experiments to
test the effectiveness of our approach. We tested our tool
on a set of synthetic benchmarks by using the Waxman
topology [11] as the network topology and we randomly
connect the controller to two switches. We used the shortest
path algorithm to generate different versions of the routing
policies. The machines used in these experiments have
Intel Xeon 3.20 GHz processors running Linux with kernel
version 3.2.0. Out tool successfully finds valid orderings for
all the experiments we ran.

We increased the size of the networks from 10 switches
to 100 switches with an increment of 10 switches with
about 50% of the switches needing to be updated. We ran
the experiments twice without optimizing for P"“PP¢". One
enables the two-way communication from the update switch
to the controller and the other without it. The execution time
is shown in Figure 4 and the total number of indices required
for such an update to finish is shown in Figure 5. The total
number of indices represents the number of rounds needed
for the update. As we can see from Figure 4, the execution
time increases as the total number of switches grows. This
is expected as the size of the formula is linear in the size
of the network and the total number of switches that need
to be updated. The requirement of two-way communication
also increases the execution time because the search space is
more constrained. On average, the two-way communication
increases the execution time by about 2.8 times. In Figure 5,
“Opt” presents the minimal P“PP¢" achieved by setting the
time limit to be 200s. The cases without the “Opt” flag
represents the total number of update rounds returned. Since
we only constrain the relative relationship between P;, there
are no constraints on the specific values of P;. In this case,
we count how many unique P; there are. As we can see,
the total number of update rounds increases with the size of

3

1

Runtime (seconds)

Indices

6
3
1

Runtime (seconds)

Indices

2.000

$+—4 No Two-Way Comm. A

6:000M 2 & with Two-Way Comm,

8.0001
4.000-
2.000F
1.000
0.500

0.250f "

01256320 30 40 50 60 70 80 90 100
Switches

Figure 4. # Switches vs. Time

[Opt, No Two-Way Comm.

HEl No Two-Way Comm.
20f | == Opt, Two-Way Comm.

E With Two-Way Comm.
15¢
10f

5,
0 10 20 30 40 50 60 70 80 90 100
Switches
Figure 5. # Switches vs. # Indices
4.00 T ,
4+—4 50 Switches i

2.00 2 -2 80 Switches f PR
6.00r =i
8.00r
4.00r
2.00f
1.00r
0.50f
0.25

10% 30% 50% 70% 90%
Percentage of Switches (%)

Figure 6. Percent of Updated Switches vs. Time

1 Opt 50 Switches
307 | mmmm 50 Switches

[Opt 80 Switches
|| mmm 80 Switches

i
o

0 10% 30% 50% 70% 90%
Percentage of Switches (%)
Figure 7. Percent of Updated Switches vs. # Indices

Approved for Public Release; Distribution Unlimited: 88ABW-2014-3771 20140814.

the network and the optimization on P“PP¢" is effective in
reducing the total update rounds. On average, it reduces the
number of update rounds by 62% (compare the 1st bar with
the second and the third with the fourth in Figure 5).

In the second set of experiments, we increase the percent-
age of the switches in the network needing to be updated
on two networks, one with 50 switches and the other with
80 switches. The results are shown in Figures 6 and 7.
Both execution time and the total number of update indices
increase with the percentage of the updated switches. We set
the time limit for the execution to be 200s. The optimization
on PYPPeT saves an average of 57% of update rounds for
the network with 50 switches and 65% for the case with 80
switches.

VI. RELATED WORK & DISCUSSION

[2] proposes a seamless network update strategy using
a different ILP based formulation, which enumerates all
the forwarding loops in the network and breaks loops by
forcing certain update orders. However, they can only handle
forwarding loop based reachability problems and cannot
handle packet blocking or parallel updates. Recently, there
have been many other works on updating the network using
SDN. [4] proposed per-packet consistency which requires
that every packet in the network is processed by either the
pre-update configuration or the post-update configuration,
and never a mixture of the two. Based on per-packet con-
sistency, they proposed a two-phase update that includes a
version number in each rule and packet. Whenever an update
is scheduled, they first install rules with a newer version
number in the middle of the network and then update the new
rules at the border of the network. Similarly, [6] proposes
an OpenFlow safe update protocol to reduce the rule space
requirement of two-phase update by temporarily forwarding
packets to the controller in the middle of the update. [5]
improves two-phase commit by increasing the number of
rounds to complete an entire update. They partition the
network into different slices and each slice observes similar
network behavior. They update the network one slice at a
time. zUpdate [12] is used to update the network without
transient violation of the bandwidth requirements on each
link. This approach computes how to update one network
traffic pattern to another pattern using a sequence of updates.
Unlike our approach, these works do not target in-band
updates and cannot deal with in-band middleboxes. Our
framework is also able to leverage partial ordering constraint
to update the network in parallel whenever possible.

VII. CONCLUSIONS

In this work, we proposed a general network routing
policy update mechanism using in-band networks. In-band
networks do not require dedicated links from the controller
to the forwarding devices. Our ILP-based symbolic represen-
tation of the network model can model the network routing

behavior and can handle both normal forwarding devices and
access control devices. By constraining the symbolic model,
we can find an update order that guarantees valid routes from
the controller to all the switches that need to be updated.
Based on the route found, we can generate a correct ordering
of the switches in which an update can be successfully
implemented. We demonstrated that our approach is scalable
for real-world networks as it can find a correct ordering
within 10 seconds for networks with less than 70 switches
(Figure 4). Moreover, our approach can minimize the update
rounds by enabling simultaneous updates for switches and
it can reduce the total number of the update rounds by
around 60%. In the future, we plan to handle networks with
additional kinds of middleboxes such as Network Address
Translators. We will also extend our framework to maintain
not only the connectivity from the controller to the updated
switches, but also from end-points to end-points to improve
service availability.

REFERENCES

[1] S. Vissicchio, L. Vanbever, C. Pelsser, L. Cittadini, P. Fran-
cois, and O. Bonaventure, “Improving Network Agility With
Seamless BGP Reconfigurations,” IEEE/ACM Transactions
on Networking, June 2013.

[2] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and
O. Bonaventure, “Seamless Network-Wide IGP Migrations,”
in Proceedings of the 2011 ACM SIGCOMM Conference.
Toronto, Canada: ACM, Aug. 2011.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: enabling innovation in campus networks,” SIGCOMM
Comput. Commun. Rev., Mar. 2008.

[4] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker, “Abstractions for network update,” in ACM SIG-
COMM, 2012.

[5] N. P. Katta, J. Rexford, and D. Walker, “Incremental consis-
tent updates,” in ACM HotSDN, 2013.

[6] R. McGeer, “A safe, efficient update protocol for OpenFlow
networks,” in ACM HotSDN, 2012.

[7] C. Filsfils, P. Mohapatra, J. Bettink, P. Dharwadkar,
P. De Vriendt, Y. Tsier, V. Van Den Schrieck, O. Bonaventure,
and P. Francois, “BGP prefix independent convergence (PIC)
technical report,” Cisco, Tech. Rep, Tech. Rep., 2011.

[8] S. Bradley, A. Hax, and T. Magnanti, “Applied mathematical
programming,” 1977.

[9] S. Zhang and S. Malik, “SAT based verification of network
data planes,” in Automated Technology for Verification and
Analysis, ser. Lecture Notes in Computer Science. Springer
International Publishing, 2013.

[10] CPLEX, Dec. 2013. [Online]. Available: http://www-01.ibm.
com/software/commerce/optimization/cplex-optimizer/

[11] B. Waxman, “Routing of multipoint connections,” Selected
Areas in Communications, IEEE Journal on, dec 1988.

[12] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz, “zUpdate: Updating data center networks with zero
loss,” in ACM SIGCOMM, 2013.

Approved for Public Release; Distribution Unlimited: 88ABW-2014-3771 20140814.

