
Safe and Flexible Controller Upgrades for SDNs

Karla Saur
Intel Labs⇤

karla.saur@intel.com

Joseph Collard
UMass Amherst

jcollard@cs.umass.edu

Nate Foster
Cornell University

jnfoster@cs.cornell.edu
Arjun Guha

UMass Amherst
arjun@cs.umass.edu

Laurent Vanbever
ETH Zurich

lvanbever@ethz.ch

Michael Hicks
University of Maryland
mwh@cs.umd.edu

ABSTRACT
SDN controllers must be periodically upgraded to add fea-
tures, improve performance, and fix bugs, but current tech-
niques for implementing dynamic updates—i.e., without dis-
rupting ongoing network functions—are inadequate. Simply
halting the old controller and bringing up the new one can
cause state to be lost, leading to incorrect behavior. For ex-
ample, if the state represents flows blacklisted by a firewall,
then tra�c that should be blocked may be allowed to pass
through. Techniques based on record and replay can recon-
struct controller state automatically, but they are expensive
to deploy and do not work in all scenarios.

This paper presents a new approach to implementing dy-
namic updates for SDN controllers. We present the design
and implementation of a new controller platform called Mor-
pheus that uses explicit state transfer to implement dynamic
updates. Morpheus enables programmers to directly initial-
ize the upgraded controller’s state as a function of its existing
state, using a domain-specific language that is designed to
be easy to use. Morpheus also o↵ers a distributed protocol
for safely deploying updates across multiple nodes. Experi-
ments confirm that Morpheus provides correct behavior and
good performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; C.2.3 [Network Operations]: Network
management

Keywords
Software-Defined Network; Dynamic Software Updating

1. INTRODUCTION
SDN controllers are complex software systems that must

simultaneously implement a range of interacting services in-

⇤Work performed while at the University of Maryland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SOSR ’16, March 14-15, 2016, Santa Clara, CA, USA

c� 2016 ACM. ISBN 978-1-4503-4211-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2890955.2890966

cluding discovery, routing, monitoring, load balancing, au-
thentication, access control, and others. Like any large soft-
ware system, SDN controllers must be periodically upgraded
to add features, improve performance, and fix bugs. How-
ever, in most networks any downtime is unacceptable, so
controller upgrades must be deployed dynamically, while the
network is running and in a way that minimizes disruptions.

Dynamic upgrades di↵er from static upgrades in that while
modifying the program code they must also be concerned
with the current execution state. In SDN, this state can be
divided into the internal state stored on controllers (e.g., in
memory, file systems, or databases) and the external state
stored on switches (e.g., in forwarding rules). A key chal-
lenge is that upgraded code may make di↵erent assumptions
about state—e.g., using di↵erent data structures on the con-
troller or installing di↵erent rules on switches.

Existing approaches. SDN controllers today typically em-
ploy one of three strategies for performing controller up-
grades, distinguished by how they attempt to ensure correct,
post-upgrade execution state.

• In simple restart, the default on open-source SDN plat-
forms such as POX [5] and Floodlight [2], the system
halts the old controller and begins executing a fresh
copy of the new controller. Any existing internal state
not explicitly designed to be persistent is lost, so for
consistency, rules on the switches are wiped at startup,
precipitating state reconstruction.

• In record and replay, provided by HotSwap [34], Open-
NF [15] and related systems [31], the system maintains
a trace of network events received by the old controller.
During an upgrade, the system first replays the logged
events to the new controller to “warm up” its internal
state and then swaps in the new controller for the old
one, leaving existing switch state in place.

• In rule-sourced reconstruction, provided by some in-
dustrial controllers, the new controller’s internal state
is initialized based on service-specific code that first
queries the current rules on switches, which provide
clues about active flows, configurations, etc.

Unfortunately, none of these approaches constitutes a com-
plete general-purpose solution to the controller upgrade prob-
lem. Simple restarts discard internal state, and wiping rules
to regenerate it floods the new controller with packet-in
events, leading to performance disruptions. In addition,

simple restarts o↵er no guarantees that the reconstructed
controller state will be harmonious with assumptions be-
ing made by end hosts—e.g., existing tra�c flows may be
dropped or misrouted. Record and replay can reproduce a
harmonious controller state in some cases, but it requires
a complex logging system that can be expensive to run.
Moreover, record and replay goes wrong in cases where the
new controller would have induced a di↵erent set of events
than the old controller did. Reconstructing controller state
from forwarding rules is laborious and error prone, and it
works only when all necessary controller state is encoded
into switch rules. It is also risky in the face of inevitable
switch failures. Section 2 discusses the limitations of cur-
rent approaches in more detail.

Morpheus: Controller upgrades by state transfer. This
paper proposes a more general and flexible solution to the
controller upgrade problem that we call controller upgrade
by state transfer. We have implemented this approach in a
new controller platform called Morpheus, which is described
in detail in Section 3.

Upgrade by state transfer has three key ingredients:

• First, in contrast with existing techniques, which indi-
rectly reconstruct controller state, Morpheus provides
programmers with direct access. This functionality
is enabled by storing critical internal state in a net-
work information base (NIB). Morpheus’s design is
modular, with separate modules implemented by pro-
cesses providing distinct services (like forwarding, traf-
fic shaping, etc.), each of which can coordinate and
share information via the NIB (like network perfor-
mance data or information about active flows).1 Im-
portantly, the NIB is itself a separate module that per-
sists between upgrades; when we upgrade a module,
then the old version’s state is still available in the NIB
for subsequent use (§3).

• Second, Morpheus provides a way to easily transform
the old controller state to make it consistent with the
new controller, ensuring that it is harmonious with the
network—e.g., preserving active flows. We expect the
programmer of an upgrade (or perhaps the operator
applying it) to write any necessary transformations.
To make this easier we define a domain-specific lan-
guage (DSL) for doing so (§4.2). In our experience, and
based on our investigation of in-the-wild controller up-
grades, writing such transformations is often straight-
forward (§5.4).

• Third, Morpheus provides a protocol for coordinat-
ing the deployment of controller upgrades. Because
multiple modules may share access to the same NIB
state (e.g., a topology discovery module and a rout-
ing module might both read/write network graph and
performance data), changes to one module might a↵ect
the state used by the other, necessitating an upgrade.
Hence, one must be careful that state upgrades take

1This design is based on the distributed architectures used
in industrial controllers such as Onix [21] and ONOS [10].
We considered retrofitting a simpler open-source controller
such as POX or Floodlight [5, 2], but decided to build a new
controller to explore issues related to upgrades in controllers
in distributed settings.

e↵ect in an orderly fashion, so that new code does not
access old state and vice versa. For this purpose we
have designed a simple three-phase protocol that qui-
esces the a↵ected modules, installs the relevant trans-
formation at the NIB, and then reloads the modules
at their new versions (§4.1).

Upgrade by state transfer directly addresses the perfor-
mance and correctness problems of prior approaches. There
is no need to log events, and there is no need to process many
events at the controller, whether by replaying old events or
by inducing the delivery of new ones by wiping rules. More-
over, state transfer gives the operator complete control over
the post-upgrade network state, a↵ording greater flexibil-
ity and ease of programming. Finally, Morpheus’s modular
design should allow its techniques to scale to even more dis-
tributed architectures.

Using Morpheus we have written several modules, and
several versions of each, including a stateful firewall, topol-
ogy discovery, routing, and load balancing. Through a series
of experiments we demonstrate the advantages of upgrade
by state transfer, compared to simple restarts and record-
and-replay: there is far less disruption and no incorrect be-
havior. We also confirm that the state transformer functions
are relatively simple to write.

Summary. This paper’s contributions are as follows:

• We study the problem of performing dynamic upgrades
to SDN controllers and identify fundamental limita-
tions of current approaches.

• We propose a new, general-purpose solution to the dy-
namic upgrade problem for SDN controllers—controller
upgrade by state transfer. With this solution, the pro-
grammer explicitly transforms old state to be used
with the new controller, and an accompanying protocol
coordinates the upgrade across distributed nodes.

• We describe a prototype implementation of these ideas
in the new Morpheus controller.

• We present several controller evolutions as case studies
as well as experiments showing that Morpheus imple-
ments upgrades correctly and with far less disruption
than current approaches.

Next, we present the controller upgrade problem in detail
(§2), the design and implementation of Morpheus (§3-4),
our experimental evaluation (§5), and a discussion of related
work and conclusion (§6-7).

2. OVERVIEW
This section explains why existing approaches for han-

dling dynamic upgrades to SDN controllers are inadequate in
general, and provides detailed motivation for our approach
based on state transfer.

2.1 Simple Restart
In simple restart, the system halts the old controller and

begins executing a fresh copy of the new controller, thereby
discarding the old controller’s internal state. While this ap-
proach can work for proactive controllers (assuming update
primitives are used [27]), in general, restarting the controller
can lead to incorrect handling of existing flows.

Switch

Connections
ipSrc

10.0.1.1

ipDst legitimate

192.168.1.2 Y

10.0.1.1 192.168.1.3 Y

192.168.99.1 10.0.1.1 N

Internal Hosts External Hosts

Stateful Firewall

Figure 1: Example network service: stateful firewall.

Example service: Stateful Firewall. Suppose the SDN
controller implements a stateful firewall, as depicted in Fig-
ure 1. The topology consists of a single switch connected to
trusted internal hosts and untrusted external hosts. Initially
the switch has no forwarding rules, so it diverts all packets
to the controller. When the controller receives a packet from
a trusted internal host, it records the internal-external host
pair in its (internal) state and punches a hole in the firewall
so the hosts can communicate. Conversely, if the controller
receives a packet from an external host first, it logs the con-
nection attempt and drops the packet.

Problem: Dropped state causes disruption. Now sup-
pose the programmer wishes to upgrade the firewall so that
if an external host tries to initiate more than n connections,
then it is blacklisted from all future communications. With
simple restart, the old controller would be swapped out for a
new controller that has no knowledge of the old controller’s
internal state—i.e., the record of connections initiated by in-
ternal and external hosts. In the absence of any other infor-
mation about the state prior to the upgrade, the controller
would delete the rules installed on the switch to match its
own internal state, which is empty. This leads to a correct-
ness problem:2 If the external host of an active connection
sends the first few packets after the rules are wiped, then
those packets will be interpreted as unsolicited connection
attempts. The host could easily be blacklisted even though
it is merely participating in a connection initiated previously
by an internal host.

2.2 Record and Replay
The record and replay approach aims to “warm up” the

internal state of the new controller by replaying events seen
by the old one. The HotSwap (HS) system [34] (an extension
of FlowVisor [32]) is a noteworthy example of this approach.
At first glance, record and replay seems to o↵er a fully au-
tomatic solution to dynamic controller upgrades. For the
stateful firewall, HS would replay the network events for
each connection initiated by an internal host and so would
easily reconstruct the set of existing connections, avoiding
the problems with the simple restart approach. In addition,

2It may also be disruptive: if unmatched tra�c is sent to
the controller, then the new controller will essentially induce
a DDoS attack against itself as a flood of packets stream in.

Switch

Active Flows
ipSrc

10.0.1.1

tcpSrc replica

6782 1

10.0.1.1 8153 2

10.0.1.2 8728 3

External Hosts Server Replicas

Load Balancer

Figure 2: Example network service: load balancer.

record and replay can be controller-independent because it
works with network events and is indi↵erent to the internals
of the old and new controllers.

But record and replay has two main limitations that pre-
vent it from being a complete solution to the controller up-
grade problem.

Problem: Run-time overhead. In general, a record and
replay system would need to store all events that might con-
tribute to the state of the new controller. Without prior
knowledge of the new controller’s functionality (which the
system would lack, in general) it is impossible to determine
whether a given event might contribute its state or not.
Hence, the system would need to log and replay a large num-
ber of events. Doing this could be prohibitively expensive,
especially in a large and long-running network.

Problem: Reconstructed state may be incorrect. Amore
serious issue is the recorded trace may not make sense for
the new controller, so replaying it may result in an incor-
rect state. If the behavior of the new controller is di↵erent,
the events that would have been generated using the new
controller and the ones that were actually recorded using
the old controller may also be di↵erent. For example, in-
stalling di↵erent forwarding rules on switches causes di↵er-
ent packet-in events to be sent to the controller. Note that
such events could be induced directly (e.g., because the new
rules handle fewer packets compared to the old rules) or in-
directly (e.g., because the new rules elicit di↵erent responses
from end hosts). In either case, establishing the correctness
of the internal state reconstituted by replaying old events
would be di�cult.

Example failure: Load balancer upgrade. To illustrate,
consider the example of a server load balancer, as depicted in
Figure 2. The topology consists of a single switch with one
port connected to a network of external hosts and another
n ports connected to back-end server replicas. Initially, the
switch has no rules, so all packets are diverted to the con-
troller. Upon receiving a new connection from an external
host, the controller picks a server replica (e.g., uniformly at
random) and installs rules that forward tra�c in both di-
rections between the host and the selected server. The con-
troller also records the selected server in its internal state

(e.g., so it can correctly repopulate the forwarding rules if
the switch drops out and later reconnects).

Now suppose the programmer wishes to dynamically de-
ploy a new version of the controller where the selection func-
tion selects the least loaded server and bounds the number
of open connections to any given server, and refuses connec-
tions that would cause a servers to exceed that cap. During
replay, the new controller would receive a network event for
each existing connection request. However, it would remap
those connections to the least loaded server instead of the
server previously selected by the old controller. The discrep-
ancy between these two strategies could easily break con-
nection a�nity—another server replica may receive the ith
packet in an existing flow and reset the connection.

2.3 Rule-sourced reconstruction
Another possible strategy is to attempt to reconstruct the

state of the new controller by deriving it from rules deployed
(by the old controller) on existing switches. Like record and
replay, this approach does work under certain assumptions.
For example, if the old controller is a proactive application
that implements destination-based forwarding along short-
est paths, the new controller could “read o↵” the controller
state from the current set of rules installed on switches. Sim-
ilarly, for the load balancing upgrade in Figure 2, the new
controller could extract the connection a�nity information
from the rules, and use this information to initialize its state.

Problems: Laborious and incomplete. Writing a con-
troller to retrieve information from forwarding rules is labo-
rious, error-prone work for the programmer. It is upgrade
specific and requires disentangling the logic of the poten-
tially many applications that installed the rules. Moreover,
the information needed to properly initialize the new con-
troller state may simply not be available—e.g., the message
history needed for stateful firewalling is absent.

2.4 Solution: Upgrade by state transfer
This paper proposes a general-purpose solution to the con-

troller upgrade problem that attacks the fundamental issue:
dynamically updating the controller’s state. The above ap-
proaches attempt to indirectly construct a reasonable state,
but they lack su�cient precision and performance to fully
solve the problem.

Our approach, which we call upgrade by state transfer, has
three ingredients. First, the controller must be architected
to provide direct access to its critical state. One way to do
this is to store that state in a persistent network information
base (NIB), as is done in controllers such as Onix [21]. Using
a NIB also enables a distributed and fault tolerant architec-
ture. Second, the programmer provides a state transformer
function, call it µ, that initializes the new controller’s state,
call it �0, given the old controller’s state, call it �. That is, �0

can be computed as µ(�). Third, the upgrading service must
provide a protocol to signal the controller’s components that
an upgrade is available so that it can quiesce prior to per-
forming the upgrade. Doing so ensures that � is consistent
(e.g., is not in the middle of being changed), before using µ
to compute �0.

Consider the problematic examples discussed thus far. For
both the firewall upgrade and the load balancing upgrade,
the state transfer approach is trivial and e↵ective: setting
the transformer function µ to a no-op (i.e., the identity func-

tion) grandfathers in existing connections and the new se-
mantics is applied to new connections. For the load-balancing
upgrade, any newly added replicas will receive all new con-
nection requests until the load balances out.

Another feature of upgrade by state transfer is that it per-
mits the developer to more easily address upgrades that are
backward-incompatible, such as the load balancer with con-
nection caps discussed above. In these situations, the cur-
rent network conditions may not constitute ones that could
ever be reached had the new controller been started from
scratch. With state transfer, the operator can either allow
this situation temporarily by preserving the existing state,
with the new policy e↵ectively enforced once the number
goes below the cap. Or she can choose to kill some connec-
tions, to immediately respect the cap. The choice is hers.
By contrast, prior approaches will have unpredictable ef-
fects: some connections may be reset while others may be
unseen by the controller but inadvertently grandfathered in.

In addition to its expressiveness benefits, upgrade by state
transfer has benefits to performance: it adds no overhead to
normal operation (no logging), and is far less disruptive at
upgrade-time (only the time to quiesce the controller and
upgrade the state). The main cost is that the network ser-
vice developer needs to write µ, which can be non-trivial.
For example, if we upgraded a routing algorithm from using
link counts to using current bandwidth measurements, the
controller state would have to change to include additional
bandwidth information. Fortunately, according to our expe-
rience and an investigation of upgrades to open-source con-
trollers, µ can be relatively simple. In fact, it can be made
even simpler by using a domain-specific language (DSL) that
makes typical choices the default, and localizes attention on
the most interesting aspects. We provide such a DSL with
our prototype controller platform, Morpheus, discussed in
the next section.

3. MORPHEUS CONTROLLER
To provide a concrete setting for experimenting with dy-

namic controller upgrades, we have implemented a new dis-
tributed controller called Morpheus, implemented in Python
and based on the Frenetic libraries [14, 9, 27]. Our design
follows the basic structure used in a number of industrial
controllers including Onix [21] and ONOS [10], but adds a
number of features designed to facilitate dynamic controller
upgrades. Morpheus’s modular design ensures that nearly
all of the controller is dynamically updatable; only a few
bits of functionality (involving the updating system itself)
cannot be changed.

3.1 Architecture
Morpheus’s architecture is shown in Figure 3. The con-

troller is structured as a distributed system in which nodes
communicate by message-passing. Morpheus provides four
types of nodes:

• platform nodes (platform), which are responsible for
managing low-level interactions with SDN switches and
interfacing with network service modules,

• a network information base (nib), which provides per-
sistent storage for module state,

Platform

EventsConfigs

NIB
fw_allowed

10.0.0.1:3456

10.0.0.2:80

Switch Switch Switch

Routing
Topology
Firewall

Platform

Update
Coordinator

Install

Pause

Put

Get

Figure 3: Morpheus architecture.

• an upgrade coordinator (updc), which implements dis-
tributed protocols for staging and deploying upgrades,
and

• service modules (topology, routing, etc.), which
implement specific kinds of functionality, such as dis-
covering topology or computing shortest paths through
the topology.

Each node executes as a separate OS-level process, support-
ing concurrent execution and isolation. Processes also make
it easy to use existing OS tools to safely spawn, execute,
replicate, kill, and restart nodes.

3.2 Components
We now describe Morpheus’s components in detail.

Platform. The basic components of Morpheus are plat-

form nodes, which implement basic controller functional-
ity: accepting connections from switches, negotiating fea-
tures, responding to keep-alive messages, installing forward-
ing rules, etc. The platform nodes implement a simple
interface that provides commands that other components
use to interact with switches:

• event() returns the next network event,

• update(pol) sets the network configuration to pol,
specified using NetKAT [9],

• pkt_out(sw,pkt,pt) injects packet pkt into the net-
work at sw and pt,

as well as commands for synchronizing with the updc during
dynamic controller upgrades:

• pause() temporarily stops propagating configurations
to the network, and

• resume() resumes propagating configurations.

When multiple Morpheus modules are operating, the plat-

form nodes make every network event available to each
module by default. If needed, filtering can be applied to pre-
vent some modules from seeing some network events. Like-
wise, the policies provided by each module are combined into

a single network-wide policy using NetKAT’s modular com-
position operators [9]. For scalability and fault tolerance,
Morpheus would typically use several platform nodes that
each manage a subset of the switches. These nodes would
communicate with each other to merge their separate event
streams into a single stream, and similarly for NetKAT poli-
cies. For simplicity, our current implementation uses a single
platform node to manage all of the switches in the network.

Network Information Base. Morpheus modules store crit-
ical state in the nib. The information in the nib is persistent,
surviving a restart of the module(s) that placed it there.3

The Morpheus nib is implemented using Redis [6], a pop-
ular key-value store [12]. We selected Redis for its simple
and e�cient interface. At present we implement this nib as
a single node, but we could easily use a distributed imple-
mentation for better fault-tolerance (e.g., Redis cluster [7]).

Information stored in the NIB is organized into names-
paces, which are asociated with a module. For example,
a firewall module might store information about which
hosts are allowed to communicate under the fw_allowed

namespace. A module may access data in multiple names-
paces: it might be the producer of one piece of data and the
consumer of another. For example, our topology module
discovers the structure of the network by interacting with
the platform nodes, and stores the topology persistently
in the topology namespace. This data is then used by the
routing module. Redis does not support namespaces di-
rectly (some other NoSQL databases do) so we encode the
namespace as a prefix of the keys used to store data values.

To handle frequently changing data, Morpheus modules
can use Redis’ publish-subscribe mechanisms. For example,
the topology module publishes a notification to a channel
if any of the keys in the topology namespace change, and
routing subscribes to this channel and updates its routing
configuration when it receives a notification.

Modules. Morpheus modules are implemented using a com-
mon design pattern. Upon startup, they connect with the
nib to retrieve any relevant persistent state. The module
then adds to, and retrieves from, the persistent store any
other necessary data depending on its function. For exam-
ple, topology discovers and stores hosts, switches, edges,
and any additional topological information in the nib. When
routing starts up it reads this information and then adds
the least-cost paths to each destination. During normal op-
eration, modules are reactive: they will process events from
the platform and from other modules. In response, they
will make changes to the NIB state and push out a new
NetKAT program via the update function on the platform
nodes, which will update in the switches.

Upgrade Coordinator. Because Morpheus has a distrib-
uted architecture, dynamic upgrades require coordination
between nodes. Morpheus uses an upgrade coordinator (or
updc) that manages interactions between nodes during an
upgrade. These interactions are discussed in detail in the
next section.

3Obviously, modules may also maintain in-memory state,
e.g., for e�ciency reasons. To support fault-tolerance (and
upgrades), any critical state that cannot be reconstructed
on restart should be stored persistently in the nib.

4. UPGRADES WITH MORPHEUS
Morpheus’s design supports controller upgrades by allow-

ing important state to persist in the NIB between versions
while providing a way to transform that state when required
by an upgrade. To ensure consistent semantics, Morpheus’s
updc node organizes upgrades to the a↵ected modules us-
ing a simple protocol. This section describes the update
protocol, the domain-specific language Morpheus provides
to write state transformations, and some example upgrades
we have implemented using Morpheus.

4.1 Upgrade protocol
To deploy an upgrade, the operator provides updc with

the following:

• new versions of the code for each module a↵ected by
the upgrade, and

• a state transformer function µ that maps the existing
persistent state in a↵ected namespaces into a suitable
format for the new versions of the a↵ected modules.

As a convenience, Morpheus programmers can write µ us-
ing a domain-specific language (DSL) we have developed for
expressing tranformations on JSON values. This language
is discussed in detail in the next subsection. Programs in
this language are compiled to Python code that takes an old
JSON value and produces an updated version of it.4 Alter-
natively, the user can write µ using standard Python code.

Given the upgrade specification, updc then executes a dis-
tributed protocol that steps through four distinct phases: (i)
quiescence, (ii) code installation and state transformation,
(iii) restart, and (iv) resumption.

1. Quiesce the affected modules. updc begins by sig-
naling the modules designated for an upgrade. The mod-
ules complete any ongoing work and shut down, signaling
updc they have done so. A timeout is used to kill any un-
responsive modules. At the same time, updc sends the list
of modules to the platform, which temporarily suppresses
any rules updates made by those modules, which could be
stale. After all modules exit and the platform indicates it
has begun blocking rule updates, Morpheus is said to have
reached quiescence.

2. Install the upgrade in the nib. Next, updc installs
the administrator-provided µ functions at the nib. The nib

verifies that these functions make sense, e.g., that if the
request is to upgrade namespace nodes from v3 to v4, then
the current nib should contain namespace nodes at version
v3. The transformations are applied lazily, during the final
step of the protocol.

3. Restart the upgraded modules. Now updc begins the
process of resuming operation. updc signals the new ver-
sions of the a↵ected modules to start up. These modules
reconnect to the nib, and the nib ensures that the modules’
requested version matches the version just installed in the
nib. The modules then retrieve relevant state stored in the
nib, and compute new rules to push to the platform. The
platform receives and bu↵ers the new rules: it propagates

4While the programmer must currently write µ, automated
assistance is also possible [18, 26].

them to the network after it has received rules (or otherwise
been signaled) from all upgraded modules, to ensure that
the rules were generated from consistent software versions.
After the platform has received rules from all upgraded
modules, it removes the old rules previously created by the
upgraded modules and installs the new rules on the switches.

4. Resume operation. At this point, the upgrade is fully
loaded and the modules proceed as normal. As the modules
access data in the nib, any installed µ function is applied
lazily. In particular, when a module queries a particular key,
if that key’s value has not yet been transformed, the trans-
former is invoked at that time and the data is updated. In
the event that the data is several versions behind, Morpheus
applies each upgrade’s µ function in sequence to bring the
data up to date.

Next, we describe the language we provide for writing
state transformations. We conclude with some example up-
grades we have implemented in Morpheus for a stateful fire-
wall, and for topology and routing modules.

4.2 Specifying State Transformations
To make it easier for programmers to migrate data that

has changed format, we developed a domain-specific lan-
guage (DSL) for specifying the required changes that will
generate µ as an alternative to writing it as explicit Python
code. Our language supports changes to key names, as well
as modifications to the contents of JSON objects. For the
latter we support adding, deleting, renaming, and updating
fields. The API also permits querying the contents of data
in other modules, e.g., for when a changed field depends on
the contents of another module’s objects.

To formulate an update, the programmer writes a sim-
ple program that describes which key-value pairs should be
updated and how they should be modified:

for (regex) old_ver->new_ver {

DIRECTIVE [json path] {action-code}

...

};

The first line contains a regular expression that specifies the
namespace to be updated. This allows the update-writer to
match all or part of the namespaces in Morpheus, such as us-
ing fw_* to match two namespaces called fw_allowed and
fw_pending. The old_ver and new_ver fields are unique
strings that the user must provide to assist Morpheus to
track which data have been updated. The body of the
for{...} contains one or more commands, each beginning
with a DIRECTIVE that specifies the action to be performed.
There are four directives to choose from, shown in Table 1:
initializing a new field, updating the value contained in a
field, deleting a field, or renaming the field.

After specifying the DIRECTIVE, the json path is an in-
dex into the JSON object (expressed as a list of JSON field
names in the case of nested fields), indicating where to apply
the corresponding action-code. This code consists of a mix
of special DSL tokens and Python code. The action-code

di↵ers per directive, as shown in the third column of Ta-
ble 1. The INIT and UPD directives are similar in that they
both must specify the value that should be initialized or re-
named. The DEL requires the code to return true or false,
indicating whether a given path should, indeed, be deleted.

Directive Path Action code Must Return
INIT [json path, or empty for entire value] Yes. (Assign value to $out.) None
UPD [json path, or empty for entire value] Yes. (Assign value to $out.) None
DEL [json path, or empty for entire value] Yes. (Code to determine what to delete.) Bool
REN [json path] ! [json path] No None

Table 1: The DSL Directives

Token Meaning

$out - the value of the path inside the [] in the Directive (this is the value to be updated, initialized, deleted, etc)
$in - the original value stored in the key (same as $out, but not written to)
$root - the root of the JSON structure.
$base - the same JSON structure, used to address siblings
$dbkey- the database key name currently being processed

Table 2: The DSL Convenience Tokens

Table 2 shows the DSL tokens that may appear in action
code, which are interpreted specially by our DSL compiler.
All of the directives’ action code may use any of the tokens,
except INIT which may not use $in because an existing value
does not exist for an initialized value. To update the keys
rather than the JSON values, the programmer uses the UPD

directive with an empty JSON path, and sets the $dbkey to-
ken to the desired new key name rather than setting $out.

DSL programs are translated into Python functions that
are stored along with the upgrade specification in the database.
During upgrade, these functions are called for each key-value
pair whose key matches the regular expression.5 We present
two examples of writing upgrades with our DSL in the next
two subsections.

4.3 Upgrade example: Firewall
We developed three di↵erent versions of a stateful firewall,

and defined upgrades between them.

• firewallout permits bidirectional flows between inter-
nal and external hosts as long as the connection is ini-
tiated by an outgoing request. The controller installs
forwarding rules between internal host S and external
host H when it sees S’s outbound packet.

• firewalloutin acts like firewallout but only installs
the rules permitting bidirectional flows after seeing re-
turning tra�c following an internal connection request.
It might do this to prevent attacks on the forwarding
table originating from a compromised host within the
network.

• firewalloutinTO adds to firewalloutin the ability to
time out connections (and uninstall their forwarding
rules) after some period of inactivity between the two
hosts.

firewallout defines a namespace fw_allowed that keeps
track of connections initiated by trusted hosts, represented
as JSON values:

5Programmers can test that these functions work properly
as usual, e.g., by testing the upgrade on a private system.
Techniques for testing dynamic software updates would also
be relevant here [25, 17].

{ "trusted_ip": "10.0.0.1",

"trusted_port": 3456,

"untrusted_ip": "10.0.0.2",

"untrusted_port": 80 }

Updating from firewallout to firewalloutin requires the
addition of a new namespace, called fw_pending. The keys
in this namespace track the internal hosts that have sent
a packet to an external host but have not heard back yet.
Once the return packet is received, the host pair is moved
to the fw_allowed namespace. For this upgrade, no trans-
former function is needed: all connections established under
the firewallout regime can be allowed to persist, and new
connections will go through the two-step process.6

Updating from firewalloutin to firewalloutinTO requires
updating the data in the fw_pending and fw_allowed names-
paces, by adding two fields to the JSON values they map to,
last_count and time_created, where the former counts the
number of packets exchanged between an internal and exter-
nal host as of the time stored in the latter. Every n seconds,
the firewall module will query the nib to see if the packet
count has changed. If so, it stores the new count and time.
If not, it removes the (actual or pending) route.

In our DSL we can express the transformation needed to
upgrade from firewalloutin to firewalloutinTO data for
the fw_allowed namespace as follows:

for fw_allowed:* ns_v0->ns_v1 {

INIT ["last_count"] {$out = 0}

INIT ["time_created"] {$out = time.time()}

};

This program states that the JSON value stored under each
key should be updated from version ns_v0 (corresponding to
firewalloutin) to ns_v1 (corresponding to firewalloutinTO)
by adding two additional fields. We can safely initialize the
last_count field to 0 because this is a lower bound on the ac-
tual exchanged packets, and we can initialize time_created
to the current time. Both values will be updated at the
next timeout. The above DSL code will be transformed to
Python code that is stored (as a string) in Redis.

6We could also imagine moving all currently approved con-
nections to the pending list, but the resulting removal of
forwarding rules would be unnecessarily disruptive.

The existing data will be transformed as the new-version
code accesses it via the nib API. When the new version
retrieves connection information from the nib, the transfor-
mation adds the two new fields to the existing value:

key : fw_allowed:10.0.0.1_3456_10.0.0.2_80

value: { "trusted_port": 3456,

"untrusted_port": 80,

"trusted_ip": "10.0.0.1",

"untrusted_ip": "10.0.0.2",

"last_count": 0,

"time_created": 1426167581.566535 }

The new controller code need not be aware that it is being
deployed as an upgrade, as the data values in the nib are
seamlessly transformed as they are accessed.

4.4 Coordination: Routing and Topology
In the above example, the firewall stores its own data in

the nib with no intention of sharing it with any other mod-
ules. As such, we could kill it, apply the upgrade, and start
the new version without worrying about interactions with
other modules. However, when multiple modules share the
same data and its format changes in a backward-incompat-
ible manner, then it is critical that we employ the upgrade
protocol described in Section 4.1, which gracefully coordi-
nates the upgrades to modules with shared data.

As an example coordinated upgrade, recall from Section 3
that our routing and topology modules share topology
information stored in the nib. In its first version, topology
merely stores information about hosts, switches, and the
links that connect them. The routing module computes
per-source/destination routes, assuming nothing about the
capacity or usage of links. In the next version, topology
regularly queries the switches for port statistics and stores
the moving average of the available capacity on each link
in the nib. This information is then used by the rout-

ing module to compute paths. The result should be better
load balancing when multiple paths exist between a given
pair of hosts. However, performing this update correctly
requires quiescing both routing and topology using our
update protocol. Note that if we did not do this, topology
might be (unsafely) updated first, and then the non-updated
routing could see topology data in the wrong format.

To perform the update, the programmer must define a µ
function that transforms the nib state into the version used
in the new controller. In this case, the µ function would
add a field to represent the available capacity on each edge,
initializing it with a default value—e.g., 1. The following
code implements such a function in our DSL:

for edge:* ns_v0->ns_v1 {

INIT ["weight"] {$out = 1}

};

Using this state transformer function, the new controller
will initially use the same routes as the old controller, be-
cause the initial values are identical, ensuring stability. Sub-
sequent routing computations will account for and store
available capacity information, thus balancing tra�c better
across all available routes.

Update to V1 Update to V2

500 k

1 M

10s 20s
Time

Ba
nd

w
id

th

Firewall: simple restart

Update to V1 Update to V2

500 k

1 M

10s 20s
Time

Ba
nd

w
id

th

Firewall: Morpheus

Figure 4: Firewall Upgrade

5. EXPERIMENTS AND EVALUATION
In this section, we report the results of experiments where

we dynamically upgrade several canonical SDN services, im-
plemented as Morpheus modules: a load balancer, a fire-
wall, and a router. We demonstrate three controller upgrade
mechanisms: state transfer using Morpheus, simple restart,
and record and replay. In all cases, state transfer is fast
and disruption-free, whereas the other techniques cause a
variety of problems, from network churn to dropped connec-
tions. We ran all experiments using Mininet HiFi [16], on
an Intel(R) Core(TM) i5-4250U CPU @ 1.30GHz with 8GB
RAM. We report the average of 10 trials.

5.1 Firewall
Figure 4 illustrates a dynamic upgrade to the firewall,

described in Section 4.3, from firewallout to firewalloutin
and then to firewalloutinTO. The figure shows the result of
simple restart (where all data is stored in memory and lost
on restart) and state transfer (where data is stored in the
nib). We do not depict record and replay, which happens
to perform as well as state transfer for this example (as
discussed in §2.2).

For the experiment, we used a single switch with two
ports, each connected to a host via a 1Mbps link. We desig-
nated one host as the client inside the firewall, and the other
as the server outside the firewall. We used iperf to establish
a TCP connection from the client to the server. The figure
plots the bandwidth reported by iperf over time. In both
experiments, we upgrade to firewalloutin after 10 seconds
and to firewalloutinTO after 20 seconds.

Update

Regenerate Routes

500 k

1 M

20s 40s
Time

Ba
nd

w
id

th

Host A
Host B

Routing and Topology: simple restart

Update

Regenerate Routes

500 k

1 M

20s 40s
Time

Ba
nd

w
id

th

Host A
Host B

Routing and Topology: Morpheus

Figure 5: Routing and Topology Discovery Upgrade

start apps restart rout topo platform
exit begins push push resume

0.00s 0.05s 0.11s 1.67s 1.68s 1.70s

Table 3: Upgrade Quiescence Times for Topology and
Routing (Median of 11 trials)

The figure shows that the bandwidth drops significantly
during an upgrade using simple restart. This is unsurprising,
since a newly started firewall does not remember existing
connections. Therefore, firewalloutin and firewalloutinTO

first block all packets from the server to the client, until the
client sends a packet, which restores firewall state. In con-
trast, Morpheus does not drop any packets because state is
seamlessly transformed from one version to the next.

5.2 Routing and Topology
Figure 5 shows the e↵ect of updating the routing and

topology modules (section 4.4), where the initial version uses
shortest paths and the final version takes network load into
account. The experiment uses four switches connected in a
diamond-shaped topology with a client and server on either
end (i.e., with two equal-costs paths between them). The
client establishes two TCP connections to the server using
iperf.

Initially, both connections are routed along the same short-
est path. Since the links along the path have a capacity
of 1Mbps, each connection gets 500kbps on average. After
20 seconds, we upgrade both modules: the new version of

Update0 M

5 M

10 M

20s 40s
Time

Ba
nd

w
id

th

Conn A
Conn B
Conn C

Load balancer: simple restart

Update0 M

5 M

10 M

20s 40s
Time

Ba
nd

w
id

th

Conn A
Conn B
Conn C

Load balancer: replay

Update0 M

5 M

10 M

20s 40s
Time

Ba
nd

w
id

th

Conn A
Conn B
Conn C

Load balancer: Morpheus

Figure 6: Load Balancer Results

topology stores link-utilization information in the nib and
the new version of routing uses this information to load-
balance tra�c. After the upgrade, each connection should
be mapped to a unique path, thus increasing link utilization.

Using simple restart, both connections are disrupted for 10
seconds, which is how long topology takes to learn the net-
work topology. Morpheus is much less disruptive: since the
µ function preserves topology information, the new rout-

ing module maps each connection to a unique path. The
connection that is not moved (Host B) su↵ers no disruption
and gracefully jumps to use 1Mbps bandwidth. The connec-
tion that is moved (Host A) is briefly disrupted as several
switch tables are updated.7

7This minor disruption could be avoided using a consistent
update [27].

Table 3 breaks down the time to run the upgrade pro-
tocol for this upgrade. It takes 0.05s for both topology

and routing to receive the signal to exit at their quiescent
points and shut down, and for the platform to also re-
ceive the signal and pause. At 0.11s, both modules restart,
begin pulling from the nib, and begin performing compu-
tations. At 1.67s and 1.68s respectively, the routing and
topology modules send their newly computed rules to the
platform. The platform holds on to the rules until it
ensures it has received the rules from both apps, and then
platform pushes both sets of rules to the switches and un-
pauses. This entire process takes 1.70s, with most of the
time taken by simply restarting the module (as would be re-
quired in the simple case anyway). In general, the amount of
time to upgrade multiple modules safely will vary based on
number of modules, the amount of state to restore, and the
type computations to be performed to generate the rules,
but the overhead (compared to a restart) seems acceptable.

5.3 Load Balancer
Figure 6 shows the e↵ect of updating a load-balancer that

maps incoming connections to a set of server replicas. For
this experiment, in addition to the simple restart and Mor-
pheus experiments, we also report the behavior of record-
and-replay, which works by recording the packet-in events
and replaying them after restart. After 40 seconds, we bring
an additional server online and upgrade the module to also
map connections to this server. To avoid disrupting clients,
existing connections should not be moved after the upgrade.

As shown in the figure, simple restart and record-and-
replay both cause some clients to be disconnected. As dis-
cussed in Section 2.2, replaying the recorded packet-ins will
cause the three connections to be evenly distributed across
the three servers. Similarly, for the simple restart, the con-
nections will be evenly distributed when the clients attempt
to reconnect. Therefore, one connection is erroneously map-
ped to the new server mid-stream, which terminates the con-
nection. In contrast, Morpheus’s state transfer causes no
disruptions, since the relevant controller state is preserved.

5.4 Programmer Effort
A Morpheus programmer must implement two pieces of

code to make a module upgradeable: (i) they must write
code to quiesce the module prior to an update, and (ii) they
must write a state transformer function µ to map the state
of the old controller into the representation used by the new
controller.

Quiescence. To check whether an upgrade is available, a
Morpheus module can simply check for nib notifications.
Once notified, the module completes all outstanding tasks
such as storing additional state in the nib or sending external
notifications, and then gracefully exits. In our examples, this
functionality was extremely simple to implement, amounting
to less than 10 lines of code in each module. Moreover, as
this functionality is largely structural, it is likely to be a one-
time e↵ort—i.e., future changes to the module will likely not
a↵ect quiescence code [18].

Transforming the state. Writing the function µ to trans-
form the state was also straightforward. For firewall, as
described in Section 4.3, we wrote 4 lines of DSL code to
initialize new fields to desired values so that the fields could

be read with the correct data. Similarly for our modules
topology and routing, as described in Section 4.4, we
wrote 3 lines of DSL code to initialize the weight field to a
default value. For the load balancer, no µ function was
necessary, as no state was transformed, only directly trans-
ferred to the new version of the program.

We also looked at the revision histories of other controllers
to get a sense of how involved writing a µ function might
be for controller upgrades that occur “in the wild.” In par-
ticular, we looked at GitHub commits from 2012–2014 for
OpenDaylight [4] and POX [5] controllers. We examined
controller service modules such as a host tracker, a topology
manager, a Dijkstra router, an L2 learning switch, a NAT,
and a MAC blocker.

Several of the changes we observed only a↵ected the ser-
vice logic. This was the case for changes to POX’s IP load
balancer in 2013, for example. For code-only changes, no
µ would be necessary. Many of the other changes involved
adding new state, or making small modifications to existing
state. For example, a change to OpenDaylight’s host tracker
on November 18, 2013 converted the representation of an
InetAddress to a IHostId to allow for more flexibility and
to store some additional state such as the data layer address.
To support this change as a dynamic upgrade, the adminis-
trator would write µ to initialize the data layer address for
all stored hosts, if known, or add some dummy value to indi-
cate that the data layer address was not known. A change to
POX’s host tracker on June 2, 2013 added two booleans to
the state to indicate if the host tracker should install flows
or should suppress ARP replies. To make this change an
upgrade, the administrator would write µ to initialize these
two to True in the nib. Of course, it is certainly possible
that writing µ functions could be more complicated than
this, but so far our investigation suggests that the e↵ort to
write µ would often be minimal.

6. RELATED WORK
Morpheus represents the first general-purpose solution to

the problem of dynamically updating SDN controllers (and
by extension, updating the networks they manage). We dis-
cussed the challenges related to dynamic updates extensively
in Section 2, specifically comparing state transfer to alterna-
tive techniques involving controller restarts and record and
replay (exemplified by the HotSwap system [34]). In this
section we provide comparison to other work that provides
some solution to the controller upgrade problem.

Graceful control-plane upgrades. Several previous works
have looked at the problem of updating control-plane soft-
ware. In-Service Software Upgrades (ISSU) [1, 3] mini-
mize control-plane downtime in high-end routers upon an
OS upgrade by installing the new control software on dif-
ferent blades, and synchronizing the state automatically.
Other research proposals go even further and allow other
routers to respond correctly to topology changes that a↵ect
packet forwarding, while waiting for a peer to restart its con-
trol plane [29, 30]. In general, most routing protocols have
mechanisms to rebuild their state when the control software
(re)starts (cf. [23, 28]), e.g., by querying the state of neigh-
boring routers.

The key di↵erence between these works and Morpheus
is that Morpheus aims to support unanticipated, semantic
changes to control-plane software, possibly necessitating a

change in state representation, whereas ISSU and normal
routing protocols cannot.8 In addition, Morpheus is general-
purpose (due to its focus on SDN), and not tied to a specific
routing protocols.

Distributed Controllers. Distributed SDN controller ar-
chitectures such as Onix [22], Hyperflow [33], ONOS [10]
or Ravana [20] can create new controller instances and syn-
chronize state among them using a consistent store. Mor-
pheus’s distributed design is inspired by the design of these
controllers, which aim to provide scalability, fault-tolerance
and reliability, and can support simple upgrades in which
the shared state is unchanged between versions (and/or is
backward compatible). However, to the best of our knowl-
edge these systems have not looked closely at the controller
upgrade problem when (parts of) the control program itself
must be upgraded in a semantics-changing manner, espe-
cially when the new controller may use di↵erent data struc-
tures and algorithms than the old one. Morpheus handles
this situation using the upgrade protocol defined in Sec-
tion 4, which quiesces the controller instances, initiates a
transformation of the shared store’s data according to the
programmer’s specification (if needed), and then starts the
new controller versions. We believe this same approach
could be applied to these distributed controllers as well.

Record and Replay. Another approach to implementing
dynamic updates is to record events received by the old con-
troller and replay them to “warm up” the new system. This
idea was explored in previous work on HotSwap [34]. An-
other line of work has explored using record and reply in the
context of middleboxes [15, 31] and even in general-purpose
operating systems [13]. Unfortunately, as described in the
early sections of this paper, record and replay does not fully
solve the controller update problem—in particular, when the
new controller implements di↵erent functionality, simply re-
playing old events may not correctly reconstruct the internal
state. By contrast, Morpheus o↵ers tools that programmers
can use to implement correct dynamic updates, including
when functionality changes.

Dynamic Software Upgrades. The approach we take in
Morpheus draws lessons from recent work on dynamic soft-
ware updating (DSU) [19, 24, 18, 26], which focuses on up-
dating a running software application without shutting it
down. Most prior DSU work has focused on updating a
single running process, which may involve transforming the
contents of its heap to work with the new code. Upgrad-
ing in distributed systems is detailed in Ajmani et al. [8],
where updates are preformed on distributed general pur-
posed nodes communicating via remote procedure calls. By
contrast, Morpheus is concerned with coordinating an up-
grade to many processes that all share the same persistent
state—transformation is on the persistent state, not each
process’s memory.9 Our DSL for writing transformations
draws inspiration from xfgen, a DSL provided by the Kit-
sune DSU system [18]; the di↵erent domain results in several

8Cisco only supports ISSU between releases within a rolling
18-month window [11]. Outside of this window, a hard-reset
of the control-plane has to be done.
9Of course, DSU techniques could be applied to each Mor-
pheus module, but in our experience this would add little
value.

di↵erences, notably in how updateable values are specified
(mapped to from their keys in particular namespaces) and
on support for updating keys.

7. CONCLUSIONS
This paper proposes controller upgrade by state transfer

as an approach for dynamically upgrading SDN controllers.
This approach works by providing direct access to the rel-
evant state in the running controller, and initializing the
new controller’s state as a function of the existing state. It
is in contrast to alternatives that attempt to automatically
reproduce the relevant state, but may not always succeed.
We implemented the approach as part of Morpheus, a new
SDN controller whose design is inspired by industrial-style
controllers. Morpheus provides means to specify transforma-
tions in a persistent store, and employs an upgrade coordi-
nation protocol to safely deploy the transformation. Experi-
ments with Morpheus show that upgrading by state transfer
is both natural and e↵ective: it supports seamless upgrades
to live networks at low overhead and little programmer ef-
fort, while prior approaches would result in disruption, in-
correct behavior, or both.

Acknowledgments. The authors wish to thank the SOSR
reviewers for their helpful feedback. Our work is supported
in part by the National Science Foundation under grants
CNS-1111698, SHF-1253165, SHF-1408745, CNS-1413985,
CNS-1413972, and ACI-1440744; the O�ce of Naval Re-
search under grant N00014-15-1-2177; a Google Faculty Re-
search Award; and gifts from Cisco, Facebook, and Fujitsu.

8. REFERENCES
[1] Cisco IOS In Service Software Upgrade.

http://tinyurl.com/acjng7k.
[2] Floodlight. http://floodlight.openflowhub.org/.
[3] Juniper Networks. Unified ISSU Concepts.

http://tinyurl.com/9wbjzhy.
[4] OpenDaylight. http://www.opendaylight.org.
[5] Pox. http://www.noxrepo.org/pox/about-pox/.
[6] Redis. http://redis.io/.
[7] Redis Cluster Specification.

http://redis.io/topics/cluster-spec.
[8] S. Ajmani, B. Liskov, and L. Shrira. Modular software

upgrades for distributed systems. In ECOOP, 2006.
[9] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin,

D. Kozen, C. Schlesinger, and D. Walker. NetKAT:
Semantic foundations for networks. In POPL, 2014.

[10] P. Berde, M. Gerola, J. Hart, Y. Higuchi,
M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow, and G. Parulkar. ONOS:
Towards an open, distributed SDN OS. In HotSDN,
2014.

[11] Cisco Systems. Cisco IOS In-Service Software
Upgrade. http://www.cisco.com/c/dam/en/us/
products/collateral/ios-nx-os-software/
high-availability/prod qas0900aecd8044c333.pdf.

[12] Db-engines ranking.
http://db-engines.com/en/ranking, 2015.

[13] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M.
Chen. Eidetic systems. In OSDI, 2014.

[14] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A
network programming language. In ICFP, 2011.

[15] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling innovation in network function control. In
SIGCOMM, 2014.

[16] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments
using container-based emulation. In CoNEXT, 2012.

[17] C. M. Hayden, S. Magill, M. Hicks, N. Foster, and
J. S. Foster. Specifying and verifying the correctness
of dynamic software updates. In Proceedings of the
International Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE), pages
278–293, Jan. 2012.

[18] C. M. Hayden, K. Saur, E. K. Smith, M. Hicks, and
J. S. Foster. E�cient, general-purpose dynamic
software updating for c. ACM Transactions on
Programming Languages and Systems (TOPLAS),
36(4):13, Oct. 2014.

[19] M. Hicks and S. M. Nettles. Dynamic software
updating. ACM Transactions on Programming
Languages and Systems (TOPLAS), 27(6):1049–1096,
November 2005.

[20] N. Katta, H. Zhang, M. Freedman, and J. Rexford.
Ravana: Controller fault-tolerance in software-defined
networking. In SOSR, 2015.

[21] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, et al. Onix: A distributed control
platform for large-scale production networks. In OSDI,
2010.

[22] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
distributed control platform for large-scale production
networks. In OSDI, 2010.

[23] J. Moy, P. Pillay-Esnault, and A. Lindem. Graceful
OSPF Restart. RFC 3623, 2003.

[24] I. Neamtiu and M. Hicks. Safe and timely dynamic
updates for multi-threaded programs. In PLDI, 2009.

[25] L. Pina and M. Hicks. Tedsuto: A general framework
for testing dynamic software updates. In Proceedings
of the International Conference on Software Testing
(ICST), 2016.

[26] L. Pina, L. Veiga, and M. Hicks. Rubah: DSU for Java
on a stock JVM. In OOPSLA, 2014.

[27] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for network update. In
SIGCOMM, 2012.

[28] S. Sangli, E. Chen, R. Fernando, J. Scudder, and
Y. Rekhter. Graceful Restart Mechanism for BGP.
RFC 4724, Jan. 2007.

[29] A. Shaikh, R. Dube, and A. Varma. Avoiding
instability during graceful shutdown of OSPF. In
INFOCOM, 2002.

[30] A. Shaikh, R. Dube, and A. Varma. Avoiding
instability during graceful shutdown of multiple OSPF
routers. IEEE/ACM Transactions on Networking,
14(3):532 –542, june 2006.

[31] J. Sherry, P. Gao, S. Basu, A. Panda,
A. Krishnamurthy, C. Macciocco, M. Manesh,
J. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker.
Rollback recovery for middleboxes. In SIGCOMM,
2015.

[32] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
production network be the testbed? In OSDI, 2010.

[33] A. Tootoonchian and Y. Ganjali. Hyperflow: A
distributed control plane for openflow. In Proceedings
of the 2010 Internet Network Management Conference
on Research on Enterprise Networking,
INM/WREN’10, 2010.

[34] L. Vanbever, J. Reich, T. Benson, N. Foster, and
J. Rexford. Hotswap: Correct and e�cient controller
upgrades for software-defined networks. In HotSDN,
2013.

