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ABSTRACT

SDN controllers must be periodically modified to add fea-
tures, improve performance, and fix bugs, but current tech-
niques for implementing dynamic updates are inadequate.
Simply halting old controllers and bringing up new ones
can cause state to be lost, which often leads to incorrect
behavior—e.g., if the state represents hosts blacklisted by a
firewall, then traffic that should be blocked may be allowed
to pass through. Techniques based on record and replay can
reconstruct state automatically, but they are expensive to de-
ploy and can lead to incorrect behavior. Problematic scenar-
ios are especially likely to arise in distributed controllers and
with semantics-altering updates.

This paper presents a new approach to implementing dy-
namic controller updates based on explicit state transfer. In-
stead of attempting to infer state changes automatically—an
approach that is expensive and fundamentally incomplete—
our framework gives programmers effective tools for imple-
menting correct updates that avoid major disruptions. We
develop primitives that enable programmers to directly (and
easily, in most cases) initialize the new controller’s state as
a function of old state and we design protocols that ensure
consistent behavior during the transition. We also present a
prototype implementation called Morpheus, and evaluate its
effectiveness on representative case studies.

1. INTRODUCTION

Software-defined networking (SDN) controllers are com-

plex software systems that must simultaneously imple-
ment a range of interacting services such as topology
discovery, routing, traffic monitoring, load balancing,
authentication, access control, and many others. Like
any non-trivial system, SDN controllers must be peri-
odically updated to add features, improve performance,
and fix bugs. However, in many networks, downtime
is unacceptable, so updates must be deployed dynam-
ically, while the network is in operation and in such a
way as to minimize disruptions.

In general, dynamic updates differ from static ones
in that while modifying the program code they must
also be concerned with the current execution state. In
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SDN, this state can be divided into the internal state
stored on controllers (e.g., in memory, file systems, or
databases), and the external state stored on switches
(e.g., in forwarding rules). A key challenge is that
updated code may make different assumptions about
state—e.g., using different formats to represent internal
data structures or installing different rules on switches.
This challenge is exacerbated in SDN, where state does
not reside at a single location but is instead distributed
across multiple controllers and switches.

Existing approaches. Most SDN controllers today em-
ploy one of two strategies for performing dynamic up-
dates, distinguished by how they attempt to ensure cor-
rect, post-update execution state.

e In simple restart, the system halts the old controller
and begins executing a fresh copy of the new controller.
In doing so, the internal state of the old controller is
discarded (except for persistent state—e.g., stored in
a database), under the assumption that any necessary
state can be reconstructed by the new controller after
the restart. One simple strategy for recovering inter-
nal state is to delete the forwarding rules installed on
switches so future network events are sent to the con-
troller, which can use them to populate its state. This
behavior is available by default in open-source SDN
platforms such as POX [5] and Floodlight [2].

e In record and replay, the system maintains a trace of
network events received by the old controller. During an
update, the system first replays the logged events to the
new controller to “warm up” its internal state and then
swaps in the new controller for the old one. By giving
the new controller access to the events that were used to
generate the internal and external state for the old con-
troller, it is possible to avoid the issues that arise with
less direct mechanisms for reconstructing state. Record
and replay has been used effectively in several previous
systems including HotSwap [30], OpenNF [11], and a re-
cent system for managing middleboxes [28]. A related
approach is to attempt to reconstruct the state from
the existing forwarding rules on the switches, rather
than from a log. According to private discussions with



SDN operators, this approach is often adapted by proac-
tive controllers that do not make frequent changes to
network state (e.g., destination-based forwarding along
shortest paths).

Unfortunately, neither approach constitutes a general-
purpose solution to the dynamic update problem: they
offer little control over how state is reconstructed and
can impose excessive performance penalties. Simple
restarts discard internal state, which can be expensive
or impossible to reproduce. In addition, there is no
guarantee that the reconstructed state will be harmo-
nious with the assumptions being made by end hosts—
i.e, existing flows may be routed along different paths or
even to different destinations, breaking socket connec-
tions in applications. Record and replay can reproduce
a harmonious state, but requires a complex logging sys-
tem that can be expensive to run, and still provides
no guarantees about correctness—e.g., in cases where
the new controllers would have generated a different set
of events than the old controller did. Reconstructing
controller state from existing forwarding rules can be
laborious and error prone, and is risky in the face of in-
evitable switch failures. We illustrate these issues using
examples in Section 2.

Our approach: Update by state transfer. The techniques
just discussed indirectly update network state after an
update. This paper proposes a more general and flexi-
ble alternative: to properly support dynamic updates,
operators should be able to directly update the internal
state of the controller, as a function of its current state.
We call this idea dynamic update by state transfer.

To support this dynamic update technique, controllers
must offer three features: (1) they need a way of mak-
ing their internal state available; (2) they need a way of
initializing a new controller’s state, starting from (a pos-
sibly transformed version of) the old controller’s state;
and (3) they need a way to coordinate behavior across
components when updates happen, to make sure that
the update process yields a consistent result. This basic
approach has been advocated in prior work on dynamic
software updates, which has shown that these require-
ments are relatively easy to meet [13, 21].

Update by state transfer directly addresses the per-
formance and correctness problems of prior approaches.
There is no need to log events, and there is no need to
process many events at the controller, whether by re-
playing old events or by inducing the delivery of new
ones by wiping rules. Moreover, the operator has com-
plete control over the post-update network state, en-
suring that it is harmonious with the network—e.g.,
preserving existing flows and policies. The main costs
are that the network programmer must write a func-
tion (we call it p) to initialize the new controller state,
given the old controller state, and the controller plat-

form must provide protocols for coordinating across dis-
tributed nodes.

Fortunately, our experience (and that of dynamic soft-
ware updates generally [13, 21]) is that for real-world
updates this function is not difficult to write and can
often be partially automated. The changes to the con-
troller platform needed to support state initialization
and coordination between nodes adds complexity, but
they are one-time changes and are not difficult to im-
plement. Moreover, the cost of coordinating controller
nodes is likely to be reasonable, since the distributed
nodes that make up the controller are likely to be rela-
tively small and either co-located on the same machine
or connected through a fast, mostly reliable network.

Morpheus: A controller with update by state transfer.
We have implemented our approach in Morpheus, a new
distributed controller platform based on Frenetic [10, 7,
22], described in Section 3. Our design is based on a
distributed architecture similar to the one used in indus-
trial controllers such as Onix [17] and ONOS [8]. We
considered modifying a simpler open-source controller
such as POX or Floodlight [5, 2], but decided to build a
new distributed controller to provide evidence that up-
date by state transfer will work in industrial settings.

Morpheus employs a NIB, basic controller replicas,
and standard applications for computing and installing
forwarding paths, each running as separate applications.
Persistent internal state is stored in the NIB, which can
be accessed by any application. When an application
starts (or restarts, e.g., after a crash) it connects to the
NIB to access the state it needs, and publishes updates
to the state while it runs. Applications coordinate rule
deployments to switches via controller replicas, which
use NetKAT [7] to combine policies into a unified pol-
icy, and can use consistent updates [22] to push rules to
switches.

Supporting update by state transfer requires only a
few additions to Morpheus’s basic design, described in
Section 4. The relevant state is already available for
modification in the NIB, so we just need a means of
modifying that state to work with the new versions.

We also need to coordinate the update across the af-
fected applications. To see why this is important, con-
sider a situation in which we have several routing ap-
plication replicas, each responsible for a subset of the
overall collection of switches. Now suppose we wish to
deploy a dynamic update that changes which paths for-
ward traffic through the network. It is clear we must up-
date all of the replicas in a coordinated manner, or else
some of the replicas could implement old paths and oth-
ers implement new paths, leading to anomalies includ-
ing loops, black holes, etc. Morpheus’s simple coordina-
tion protocol operates in three steps: (1) quiescence—
the affected applications are signaled and paused before



the update begins; (2) installation—the u function is
registered with the NIB for the purposes of transform-
ing the state; and (3) restart—the updated applications
are restarted, using p to update the NIB state (in a co-
ordinated way). After the state is updated, they send
updated policies to the controller replicas which com-
pose them and generate rules to install on switches.
Using Morpheus we have written several applications,
and several versions of each, including a stateful fire-
wall, topology discovery, routing, and load balancing.
Through a series of experiments, described in Section 5,
we demonstrate the advantages of update by state trans-
fer, compared to simple restarts and record-and-replay.
In essence, there is far less disruption, and no incorrect
behavior. We also find that the p functions are rela-
tively simple, and an investigation of changes to open-
source controllers suggests that p functions for realistic
application evolutions would be simple as well.

Summary. This paper’s contributions are as follows:

e We study the problem of performing dynamic up-
dates to SDN controllers and identify fundamental
limitations of current approaches.

e We propose a new, general-purpose solution to dy-
namic update problem for SDNs—dynamic update
by state transfer. With this solution, the program-
mer explicitly transforms old state to be used with
the new controller, and an accompanying protocol
coordinates the update across distributed nodes.

e We describe a prototype implementation of these
ideas in the Morpheus system.

e We present several applications as case studies as
well as experiments showing that Morpheus imple-
ments updates correctly and with far less disrup-
tion than current approaches.

Next, we present the design and implementation of Mor-
pheus (§2-4), our experimental evaluation (§5), and a
discussion of related work and conclusion (§6-7).

2. OVERVIEW

This section explains why existing approaches for han-
dling dynamic updates to SDN controllers are inade-
quate in general, and provides detailed motivation for
our approach based on state transfer.

2.1 Simple Restart

As an example, suppose the SDN controller imple-
ments a stateful firewall, as depicted in Figure 1. The
topology consists of a single switch connected to trusted
internal hosts and untrusted external hosts. Initially
the switch has no forwarding rules, so it diverts all
packets to the controller. When the controller receives
a packet from a trusted internal host, it records the
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Figure 1: Example application: stateful firewall.

internal-external host pair in its (internal) state and
punches a hole in the firewall so the hosts can commu-
nicate. Conversely, if the controller receives a packet
from an external host first, it logs the connection at-
tempt and drops the packet.

Now suppose the programmer wishes to update the
firewall so that if an external host tries to initiate more
than n connections, then it is blacklisted from all fu-
ture communications. With simple restart, the old con-
troller would be swapped out for a new controller that
contains no record of connections initiated by internal
and external hosts. In the absence of any other informa-
tion about the state prior to the update, the controller
would delete the rules installed on the switch to match
its own internal state, which is empty. This leads to a
correctness problem:! If the external host of an active
connection sends the first few packets after the rules are
wiped, then those packets will be interpreted as unso-
licited connection attempts. The host could easily be
blacklisted even though it is merely participating in a
connection initiated previously by an internal host.

This problem stems from the fact that the old con-
troller’s state is discarded by the simple restart. In
this example, it could be avoided by storing key inter-
nal state outside of the controller process’s memory—
e.g., in a separate network information base (NIB), as
is done in controllers such as Onix [17]—and indeed, we
do exactly this in our Morpheus controller. However, in
general, safe dynamic updates require more than exter-
nalized state, as we discuss in Section 2.3—e.g., in the
case that the new version expects the state in a new
format and multiple controllers share this state.

2.2 Record and Replay

At first glance, record and replay seems like it might
offer a fully automatic solution to dynamic controller

It may also be disruptive: if unmatched traffic is sent to
the controller, then the new controller will essentially induce
a DDoS attack against itself as a flood of packets stream in.
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Figure 2: Example application: load balancer.

updates. The HotSwap (HS) system [30], a noteworthy
example of this approach, records a trace of the events
received by the old controller and replays them to the
new controller to “warm up” its internal state before
swapping it in. For the stateful firewall, HS would re-
play the network events for each connection initiated
by an internal host and so would easily reconstruct the
set of existing connections, avoiding the problems with
the simple restart approach. Moreover, because record
and replay works with events drawn from a standard
API like OpenFlow, it is fully “black box”—the im-
plementation details of the old and new controllers are
immaterial.

Unfortunately, record and replay has several limita-
tions that prevent it from being a full solution to the
dynamic update problem. One obvious issue is over-
head: in general, unless the system has prior knowledge
of the new controller’s functionality (which it will not, in
general), the system will have to record (and replay) all
relevant events that contributed to the network’s cur-
rent state. Doing this can be prohibitively expensive in
a large, long-running network.

Another issue is that the recorded trace may not
make sense for the new controller, and therefore replay-
ing it may result in an incorrect state, for the following
reasons. The new controller may, in general, behave dif-
ferently than the old one—e.g., it may install different
forwarding rules on switches. As such, if the new con-
troller had been used from the start, these rules might
have caused a different set of network events to be gen-
erated than those that were actually recorded. Such
events could have been induced directly due to different
rules (e.g., because they handle fewer or more pack-
ets compared to the old rules) or they might have been
induced indirectly (e.g., because the new rules elicit dif-
ferent responses from the hosts that are communicating
via the network). Establishing that an update is cor-
rect under these circumstances is extremely difficult in

general.

To illustrate, consider the example of a server load
balancer, as depicted in Figure 2. The topology con-
sists of a single switch with one port connected to a
network of external hosts and another n ports connected
to back-end server replicas. Initially, the switch has no
rules, so all packets are diverted to the controller. Upon
receiving a new connection from an external host, the
controller picks a server replica (e.g., uniformly at ran-
dom) and installs rules that forward traffic in both di-
rections between the host and the selected server. The
controller also records the selected server in its internal
state (e.g., so it can correctly repopulate the forwarding
rules if the switch drops out and later reconnects).

Now suppose the programmer wishes to dynamically
deploy a new version of the controller where the selec-
tion function selects the least loaded server and also
puts a cap ¢ on the number of open connections to
any given server, and refuses connections that would
cause a servers to exceed that cap. During replay, the
new controller would receive a network event for each
existing connection request. However, it would remap
those connections to the least loaded server instead of
the server previously selected by the old controller. In
general, the discrepancy between these two load balanc-
ing strategies will break connection affinity—a different
server replica may receive the ith packet in a flow and
reset the connection.

Attempting to reconstruct the controller state from
querying the switch state could also be problematic. Al-
though the new controller would have the information
needed to generate forwarding rules that preserve con-
nection affinity, writing the controller to retrieve this
information is potentially laborious, error-prone work
for the programmer. And it may require modifications
to the code; e.g., if the new controller uses statically
allocated data structures to keep track of active flows
(something that is possible due to the cap ¢), it may be
incorrect to exceed the cap. We would prefer a solution
that is simpler and more systematic.

2.3 Solution: Update by state transfer

This paper proposes a different approach to the SDN
dynamic update problem. Rather than attempting to
develop fully automated solutions that handle certain
simple cases but are more awkward or impossible in oth-
ers, we propose a general-purpose solution that attacks
the fundamental issue: dynamically updating the state.
The above approaches attempt to indirectly reconstruct
a reasonable state, but they lack sufficient precision and
performance to fully solve the problem.

Our approach, which we call update by state transfer,
solves the dynamic update problem by giving the pro-
grammer direct access to the running controller’s state,
call it o, along with a way enabling the new controller



with an existing state, call it o, such that the new state
can be constructed as a function, call it u, of the old
state so that ¢/ = u(o). In addition, our approach re-
quires a means to signal the controller that an update
is available so that it can quiesce prior to performing
the update. This mechanism ensures that ¢ is consis-
tent (e.g., is not in the middle of being changed) before
using p to compute o”.

Consider the problematic examples presented thus
far. For both the firewall update and the load balanc-
ing update, the state transfer approach is trivial and
effective: setting the p function to a no-op (i.e., iden-
tity function) grandfathers in existing connections and
the new semantics is applied to new connections. Pleas-
antly, for the load-balancing update, any newly added
replicas will receive all new connection requests until
the load balances out.

Another feature of update by state transfer is that it
permits the developer to more easily address updates
that are backward-incompatible, such as the load bal-
ancer with a cap ¢ discussed above. In these situations,
the current network conditions may not constitute ones
that could ever be reached had the new controller been
started from scratch. With state transfer, the operator
can either allow this situation temporarily by preserv-
ing the existing state, with the new policy effectively
enforced once the number goes below the cap. Or she
can choose to kill some connections, to immediately re-
spect the cap. The choice is hers. By contrast, prior
approaches will have unpredictable effects: some con-
nections may be reset while others may be inadvertently
grandfathered in, unbeknownst to the controller.

In addition to its expressiveness benefits, update by
state transfer has benefits to performance: it adds no
overhead to normal operation (no logging), and far less
disruption at update-time (only the time to quiesce the
controller and update the state). The main cost is that
the network service developer needs to write u, which
will not always be a no-op. For example, if we updated
a routing algorithm from using link counts to using
current bandwidth measurements, the controller state
would have to change to include this additional state.
Fortunately, according to our experience (and that of a
substantial body of work in the related area of dynamic
software updating), p tends to be relatively simple, and
its construction can be at least partially automated.

3. MORPHEUS CONTROLLER

To provide a concrete setting for experimenting with
dynamic SDN updates, we have implemented a new
distributed controller called Morpheus, implemented in
Python and based on the Frenetic libraries [10, 7, 22].
Our design follows the basic structure used in a num-
ber of industrial controllers including Onix [17] and
ONOS [8], but adds a number of features designed to
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Figure 3: Morpheus architecture.

facilitate staging and deployment of live updates. This
means that it should be easy to adapt update techniques
developed in the context of Morpheus for use in other
controllers as well. We should note that our aim is to
support updates to the applications running on the con-
troller, but not necessarily the controller itself. In the
future, we plan to investigate extensions that will also
support updates to the controller infrastructure—e.g.,
migrating to a new protocol for communicating with
SDN switches.

3.1 Architecture

Morpheus’s architecture is shown in Figure 3. The
controller is structured as a distributed system in which
nodes communicate via well-defined message-passing in-
terfaces. Morpheus provides four types of nodes:

e platform nodes (PLATFORM), which are responsi-
ble for managing low-level interactions with SDN
switches and interfacing with applications,

e a network information base (NIB), which provides
persistent storage for application state,

e an update coordinator (UPDC), which implements
distributed protocols for staging and deploying up-
dates, and

e application nodes (TOPOLOGY, ROUTING, etc.), which

implement specific kinds of functionality, such as
discovering topology or computing shortest paths
through the topology.

Each node executes as a separate OS-level process, sup-
porting concurrent execution and isolation. Processes
also make it easy to use existing OS tools to safely
spawn, execute, replicate, kill, and restart nodes.

3.2 Components

We now describe Morpheus’s components in detail.



Platform. The most basic components are PLATFORM
nodes, which implement basic controller functionality:
accepting connections from switches, negotiating fea-
tures, responding to keep-alive messages, installing for-
warding rules, etc. The PLATFORM nodes implement a
simple interface that provides commands for interacting
with switches:

e event () returns the next network event,

e update(pol) sets the network configuration to pol,
specified using NetKAT [7],

e pkt_out(sw,pkt,pt) injects packet pkt into the
network at sw and pt,

as well as commands for synchronizing with the upPDC
during dynamic updates:

e pause () temporarily stops propagating configura-
tions to the network, and

e resume () resumes propagating configurations.

When multiple Morpheus applications are operating,
the PLATFORM nodes make every network event avail-
able to each application by default. If needed, filter-
ing can be applied to prevent some applications from
seeing some network events. Likewise, the policies pro-
vided by each application are combined into a single
network-wide policy using NetKAT’s modular compo-
sition operators [7]. For scalability and fault tolerance,
Morpheus would typically use several PLATFORM nodes
that each manage a subset of the switches. These nodes
would communicate with each other to merge their sep-
arate event streams into a single stream, and similarly
for NetKAT policies. For simplicity, our current imple-
mentation uses a single PLATFORM node to manage all
of the switches in the network.

Network Information Base. Morpheus applications store
persistent state in the NIB. The information in the NIB
is guaranteed to be preserved across application exe-
cutions, thereby avoiding disruption if individual ap-
plications stop and restart. The NIB provides a simple
interface to a NoSQL key-value store, which can be used
to store persistent state.? Morpheus’s store is currently
based on Redis [6] and although it currently uses a single
node, Redis supports clustering for better scalability.
Data stored in the NIB is divided among concep-
tual namespaces, organized according to the applica-
tions that use it. For example, a firewall application
might store information in the NIB in the fw_allowed
namespace about which hosts are currently allowed. An
application may access data in multiple namespaces,

2Obviously, applications may also maintain their own in-
memory state for efficiency reasons, but this state is lost on
restart.

where it might be the conceptual data owner for one,
but a consumer of another. For example, our TOPOL-
OGY application discovers the structure of the network
by interacting with the PLATFORM nodes, and stores
the topology persistently in the topology namespace.

Redis does not support namespaces directly (some
other NoSQL databases do) so we encode the names-
pace as a prefix of the keys under which we store a
application’s data values. Many Morpheus applications
also use Redis’ built-in publish-subscribe mechanism to
handle frequently changing data. For example, TOPOL-
OGY publishes a notification to a channel any of the
keys in the topology namespace changes, and ROUTING
subscribes to this channel and updates its routing con-
figuration appropriately when it receives a notification
that the topology has changed.

Applications. Applications running on top of Morpheus
follow a common design pattern. Upon startup, they
connect with the NIB to retrieve any relevant persistent
state. The application then adds to, and retrieves from,
the persistent store any other necessary data depend-
ing on its function. For example, TOPOLOGY discovers
and stores hosts, switches, edges, and additional infor-
mation about the topology in the NIB, and when ROUT-
ING starts up it reads this information and then adds
the least-cost paths to each destination. During normal
operation, applications are reactive: they will process
events from the PLATFORM and from other applications
(e.g., via the pub-sub mechanism). In response, they
will make changes to the NIB state and push out a new
NetKAT program via the update function on the PLAT-
FORM nodes, which will update in the switches.

Update Coordinator. Because Morpheus has a distrib-
uted architecture, dynamic updates require coordina-
tion between nodes. Morpheus uses an update coor-
dinator (or UPDC) that manages interactions between
nodes during an update. We discuss these interactions
in detail in the next section.

4. DYNAMIC UPDATES WITH MORPHEUS

Morpheus’s design supports dynamic updates by al-
lowing important state to persist in the NIB between
versions while providing a way to transform that state
when required by an update. To ensure consistent se-
mantics, Morpheus’s UPDC node organizes updates to
the affected applications using a simple protocol. This
section describes this protocol, and then describes some
example updates that we have performed.

4.1 Update protocol

To deploy an update, the operator provides UPDC
with the following update specification:

e New versions of the affected applications’ code



e A state transformation function g that maps the
existing persistent state in affected namespaces into
a format suited to the new application versions.

As a convenience, the application programmer can
write g in a domain-specific language (DSL) we de-
veloped for writing transformers over JSON values (in-

spired by Kitsune’s zfgen language [13]), illustrated briefly

in Sections 4.2 and 4.3. This language’s programs are
compiled to Python code that takes an old JSON value
and produces an updated version of it.? Alternatively,
the user can write p using standard Python code.

Given the update specification, UPDC then executes
a distributed protocol that steps through four distinct
phases: (i) application quiescence, (ii) code installation
and state transformation, (iii) application restart, and
(iv) controller resumption.

1. Quiesce the applications. UPDC begins by signaling
the applications designated for an update. The appli-
cations complete any ongoing work and shut down, sig-
naling UPDC they have done so. (A timeout is used to
forcibly shut down applications that do not exit grace-
fully.) At the same time, UPDC sends the list of applica-
tions to the PLATFORM, which will temporarily suppress
any rules updates made by those applications, which
could be stale. Once all applications have exited, and
the PLATFORM has indicated it has begun blocking the
rules, Morpheus has reached quiescence.

2. Install the update in the N1B. Next, UPDC installs the
administrator-provided p functions at the NIB. The NIB
verifies that these functions make sense, e.g., that if the
request is to update for namespace nodes from versions
v3->v4, then the current NIB should contain namespace
nodes at version v3. All transformations will be applied
lazily, as part of in step 4.

3. Restart the applications. Now UPDC begins the pro-
cess of resuming operation. UPDC signals the new ver-
sions of the affected applications to start up. These ap-
plications connect to the NIB, and the NIB ensures that
the applications’ requested version matches the version
just installed in the NIB. The applications then retrieve
relevant state stored in the NIB, and compute and push
the new rules to the PLATFORM. The PLATFORM re-
ceives and holds the new rulesets. It will push them
once it has received rules (or otherwise been signaled)
from all of the updated applications, to ensure that the
rules were generated from consistent software versions.
Once the PLATFORM has received rules from all updated
applications, it will remove the old rules previously cre-
ated by the updated applications and install the new
rules on the switches.

3While the programmer currently must write x, automated
assistance is also possible [13, 21].

4. Resume operation. At this point, the update is fully
loaded and the applications proceed as normal. As the
applications access data in the NIB, any installed p func-
tion is applied lazily. In particular, when an application
queries a particular key, if that key’s value has not yet
been transformed, the transformer is invoked at that
time and the data is updated.

The rest of this section describes some example up-
dates we have implemented in Morpheus for a stateful
firewall, and for TOPOLOGY and ROUTING applications.

4.2 Update example: Firewall

We developed three different versions of a stateful
firewall, and defined updates between them.

e FIREWALL~— permits bidirectional flows between
internal and external hosts as long as the connec-
tion is initiated from the inside. When the con-
troller sees an outbound packet from internal host
S to external host H, it installs forwarding rules
permitting communication between the two.

e FIREWALL= acts like FIREWALL~— but only in-
stalls the rules permitting bidirectional flows af-
ter seeing returning traffic following an internal
connection request. (It might do this to prevent
attacks on the forwarding table originating from a
compromised host within the network.)

e FIREWALL=0 adds to FIREWALL= the ability to
time out connections (and uninstall their forward-
ing rules) after some period of inactivity between
the two hosts.

FIREWALL+— defines a namespace fw_allowed that
keeps track of connections initiated by trusted hosts,
represented as JSON values:

{ "trusted_ip": "10.0.0.1",
"trusted_port": 3456,
"untrusted_ip": "10.0.0.2",
"untrusted_port": 80 }

Updating from FIREWALL~— to FIREWALL= requires
the addition of a new namespace, called fw_pending;
the keys in this namespace track the internal hosts that
have sent a packet to an external host but have not
heard back yet. Once the return packet is received,
the host pair is moved to the fw_allowed namespace.
For this update, no transformer function is needed: all
connections established under the FIREWALL~ regime
can be allowed to persist, and new connections will go
through the two-step process.*

4We could also imagine moving all currently approved con-
nections to the pending list, but the resulting removal of
forwarding rules would be unnecessarily disruptive.



Updating from FIREWALL= to FIREWALL=( requires
updating the data in the fw_pending and fw_allowed
namespaces, by adding two fields to the JSON values
they map to, last_count and time_created, where the
former counts the number of packets exchanged between
an internal and external host as of the time stored in the
latter. Every N seconds (for some N, like 3), the fire-
wall application will query the NIB to see if the packet
count has changed. If so, it stores the new count and
time. If not, it removes the (actual or pending) route.

In our DSL we can express the transformation from
FIREWALL= to FIREWALL=0 data for the fw_allowed
namespace as follows:

for fw_allowed:* ns_vO->ns_vl {

INIT ["last_count"] {$out = 0}

INIT ["time_created"] {$out = time.time()}
};

This states that for every key in the namespace, its
corresponding JSON value is updated from version ns_v0
(corresponding to FIREWALL=) to ns_v1l (correspond-
ing to FIREWALL=0) by adding two JSON fields. We
can safely initialize the last_count field to 0 because
this is a lower bound on the actual exchanged pack-
ets, and we can initialize time_created to the current
time. Both values will be updated at the next timeout.
In general, our DSL can express transformations that
involve adding, renaming, deleting field names, modi-
fying any data stored in the fields, and also renaming
the keys themselves. The DSL is detailed in full in a
separate work [24] focusing on such updates.

The above code will be compiled to Python code that
is stored (as a string) in Redis and associated with the
new version. The existing data will be transformed as
the new version accesses it via the NIB accessor API.
When the new version of the program retrieves con-
nection information from the NIB, the transformation
would add the two new fields to the existing JSON value
shown earlier in this section:

key: fw_allowed:10.0.0.1_3456_10.0.0.2_80
value: { "trusted_port": 3456,
"untrusted_port": 80,
"trusted_ip": "10.0.0.1",
"untrusted_ip": "10.0.0.2",
"last_count": O,
"time_created": 1426167581.566535 }

4.3 Coordination: Routing and Topology

In the above example, the firewall is storing its own
data in the NIB with no intention of sharing it with any
other applications. As such, we could have killed the
application, installed the update, and started the new
version. However, when multiple applications share the
same data and its format changes in a backward-in-
compatible manner, then it’s critical that we employ

the update protocol described in Section 4.1, which
gracefully coordinates the updates to applications with
shared data.

As an example coordinated update, recall from Sec-
tion 3 that our ROUTING and TOPOLOGY applications
share topology information stored in the NIB. In its first
version, TOPOLOGY merely stores information about
hosts, switches, and the links that connect them. The
ROUTING application computes per-source/destination
routes, assuming nothing about the capacity or usage of
links. In the next version, TOPOLOGY regularly queries
the switches for port statistics and stores the moving
average of each link’s bitrate in the NIB. This informa-
tion is then used by ROUTING when computing paths.
The result should be better load balancing when multi-
ple paths exist, between hosts.

Updating from the first to the second version in Mor-
pheus requires adding a field to the JSON object for
edges, to add the measured bitrate. The transformer p
simply initializes this field to 1, indicating the default
value for traffic on the link as follows:

for edge:* ns_vO->ns_v1 {

INIT ["weight"] {$out = 1}

}

As such, the initial run of the routing algorithm will
reproduce the existing routes because all initial values
will be the same, ensuring stability. Subsequent ROUT-
ING computations will account for and store the added
usage information and thus better balance the routes.

S. EXPERIMENTS AND EVALUATION

In this section, we report the results of experiments
where we dynamically update several canonical SDN
applications: a load balancer, a firewall, and a rout-
ing application. We implement three dynamic update

mechanisms: state transfer using Morpheus, simple restart,

and record and replay. In all cases, state transfer is
fast and disruption-free, whereas the other techniques
cause a variety of problems, from network churn to
dropped connections. We ran all experiments using
Mininet HiFi [12], on an Intel(R) Core(TM) i5-4250U
CPU @ 1.30GHz with 8GB RAM. We report the aver-
age of 10 trials.

5.1 Firewall

Figure 4 illustrates a dynamic update to the firewall,
described in Section 4.2, from FIREWALL<— to FIRE-
WALL= and then to FIREWALL=0@. The figure shows
the result of simple restart (where all data is stored in
memory and lost on restart) and state transfer (where
data is stored in the NIB). We do not depict record
and replay, which happens to perform as well as state
transfer for this example (as per Section 2.2).

For the experiment, we used a single switch with
two ports (with 1 MBPS bandwidth) connected to two
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Figure 4: Firewall Update

hosts. One host is designated the client inside the fire-
wall and the other is the server outside the firewall. Us-
ing iperf, we establish a TCP connection from the client
to the server. The figure plots the bandwidth reported
by iperf over time. In both experiments, we update to
FIREWALL= after 10 seconds and FIREWALL=0 after
20 seconds.

Using simple restart, the figure shows that bandwidth
drops significantly during updates. This is unsurpris-
ing, since a newly started firewall doesn’t remember ex-
isting connections. Therefore, FIREWALL= and FIRE-
WALL=0 first block all packets from the server to the
client, until the client sends a packet, which restores
firewall state. In contrast, Morpheus doesn’t drop any
packets because state is seamlessly transformed from
one version to the next.

5.2 Routing and Topology

Figure 5 shows the effect of updating routing and
topology applications (described in section 4.3), where
the initial version uses shortest paths and the final ver-
sion takes current usage into account. The experiment
uses four switches connected in a diamond-shaped topol-
ogy with a client and server on either end. Therefore,
there are two paths of equal length through the net-
work. The client establishes two iperf TCP connections
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Figure 5: Routing and Topology Discovery Update

to the server.

Initially, both connections are routed along the same
path because the first version of TOPOLOGY and ROUT-
ING pick the same shortest path. The links along the
path are IMBPS, therefore each connection gets 500K-
BPS by fair-sharing. After 20 seconds elapse, we up-
date both applications: the new version of TOPOLOGY
stores link-utilization information in the NIB and the
new version of ROUTING using this information to bal-
ance traffic across links. After the update, each connec-
tion should be mapped to a unique path, thus increasing
link utilization and the bandwidth reported by iperf.

Using simple restart, both connections are disrupted
for 10 seconds, which is how long TOPOLOGY takes
to learn the network topology. Until the topology is
learned, routing can’t route traffic for either connec-
tion. Morpheus is much less disruptive. Since the state
transfer function preserves topology information, the
new ROUTING module maps each connection to a unique
path. The connection that is not moved (Host B) suf-
fers no disruption and gracefully jumps to use IMBPS
bandwidth. The connection that is moved (Host A) is
briefly disrupted as several switch tables are updated.
Even this disruption could be avoided using a consistent
update [22].

Table 1 breaks down the time to run the update pro-



apps restart rout  topo  platform
start . .

exit begins  push  push  resume
0.00s 0.05s 0.11s 1.67s 1.68s 1.70s

Table 1: Update Quiescence Times for TOPOLOGY and
ROUTING (Median of 11 trials)

tocol for this update. It takes .05s for both TOPOLOGY
and ROUTING to receive the signal to exit at their qui-
escent points and shut down, and for the PLATFORM to
also receive the signal and pause. At .11s, both applica-
tions restart, begin pulling from the NI1B, and begin per-
forming computations. At 1.67s and 1.68s respectively,
the ROUTING and TOPOLOGY applications send their
newly computed rules to the PLATFORM. The PLAT-
FORM holds on to the rules until it ensures it has re-
ceived the rules from both apps, and then PLATFORM
pushes both sets of rules to the switches and unpauses.
This entire process takes 1.70s, with most of the time
taken by simply restarting the application (as would be
required in the simple case anyway). In general, the
amount of time to update multiple applications safely
will vary based on number of applications, the amount
of state to restore, and the type computations to be
performed to generate the rules, but the overhead (com-
pared to a restart) seems acceptable.

5.3 Load Balancer

Figure 6 shows the effect of updating a load-balancer
that maps incoming connections to a set of server repli-
cas. For this experiment, in addition to the simple
restart and Morpheus experiments, we also report the
behavior of record-and-replay which consists of record-
ing the packet-in events and replaying them after restart.
After 40 seconds, we bring an additional server online
and update the application to also map connections to
this server. To avoid disconnecting clients, existing con-
nections should not be moved after the update.

As shown in the figure, both simple restart and record-
and-replay cause disconnections, whereas state transfer
causes no disruptions, since the state is preserved. As
discussed in Section 2.2, replaying the recorded packet-
ins will cause the three connections to be evenly dis-
tributed across the three servers. Similarly, for the sim-
ple restart, the connections will be evenly distributed
when the clients attempt to reconnect. Therefore, one
connection is erroneously mapped to the new server
mid-stream, which terminates the connection.

5.4 Programmer Effort

Starting from a Morpheus application/service, there
are two main additional tasks required to enable dy-
namic update: writing code to quiesce an application
prior to an update, and writing a p transformer func-
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tion to change the state. In this subsection we discuss
both tasks, showing that both are straightforward.

Quiescence. The application developer must write code
to check for notifications from the NIB that an update
is available, and if so to complete any outstanding tasks
and gracefully exit. These tasks would include storing
any additional state in the NIB and/or notifying external
parties. For all of our examples, this work was quite
simple, amounting to 8 lines of code.

Transforming the state. Writing the function p to trans-
form the state was also straightforward. For FIREWALL,
as described in Section 4.2, we wrote 4 lines of DSL
code to initialize new fields to desired values so that
the fields could be read with the correct data. Simi-
larly for our applications TOPOLOGY and ROUTING, as
described in Section 4.3, we wrote 3 lines of DSL code
to initialize the weight field to a default value. For the
LOAD BALANCER, no p function was necessary, as no
state was transformed, only directly transferred to the
new version of the program.

We also looked at the application histories of other
controllers to get a sense of how involved writing a u
function might be for updates that occur “in the wild.”
In particular, we looked at GitHub commits from 2012-
2014 for OpenDaylight [4] and POX [5] applications.
We examined applications such as a host tracker, a
topology manager, a Dijkstra router, an L2 learning
switch, a NAT, and a MAC blocker. Several of the ap-
plication changes consisted only of updates to the appli-
cation logic, such as multiple changes to POX’s IP load
balancer in 2013. For them, no y would be necessary.
We also found that many of the application changes
involved adding state, or making small changes to ex-
isting state. For example, an update to OpenDaylight’s
host tracker on November 18, 2013 converted the rep-
resentation of an InetAddress to a IHostId to allow
for more flexibility and to store some additional state
such as the data layer address. To create this update,
the administrator would write p to initialize the data
layer address for all stored hosts, if known, or add some
dummy value to indicate that the data layer address was
not known. An update to POX’s host tracker on June
2, 2013 added two booleans to the state to indicate if
the host tracker should install flows or should suppress
ARP replies. To create this update, the administrator
would write p to initialize these to True in the NIB. To
sum up, while the size of p scales with the size of the
change in state being made, in practice, we found that
the effort to write p is minimal.

6. RELATED WORK

Morpheus represents the first general-purpose solu-
tion to the problem of dynamically updating SDN con-
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Figure 6: Load Balancer Results

trollers (and by extension, updating the networks they
manage). We argued this point extensively in Section 2,
specifically comparing to alternative techniques involv-
ing controller restarts and record and replay (exempli-
fied by the HotSwap system [30]). In this section we
provide comparison to other work that provides some
solution to the dynamic update problem.

Graceful control-plane updates. Several previous works
have looked at the problem of updating control-plane
software. In-Service Software Upgrades (ISSU) [1, 3]
minimize control-plane downtime in high-end routers
upon an OS upgrade by installing the new control soft-
ware in parallel with the old one, on different blade and
synchronizing the state automatically. Other research
proposals go even further and allow other routers to re-
spond correctly to topology changes that affect packet
forwarding, while waiting for a peer to restart its con-
trol plane [26, 27]. In general, most routing protocols
have mechanisms to rebuild their state when the control
software (re)starts (cf. [19, 23]), e.g., by querying the
state of neighboring routers.

The key difference between these works and Mor-
pheus is that Morpheus aims to support unanticipated,
semantic changes to control-plane software, possibly ne-
cessitating a change in state representation, whereas
ISSU and normal routing protocols cannot.® In addi-
tion, Morpheus is general-purpose (due to its focus on
SDN), and not tied to a specific protocol design (e.g., a
routing protocol).

Distributed Controllers. Distributed SDN controller ar-
chitectures such as Onix [18], Hyperflow [29], ONOS 8]
or Ravana [16] can create new controller instances and
synchronize state among them using a consistent store.
Morpheus’s distributed design is inspired by the design
of these controllers, which aim to provide scalability,
fault-tolerance and reliability, and can support simple

5Cisco only supports ISSU between releases within a rolling
18-month window [9]. Outside of this window, a hard-reset
of the control-plane has to be done.
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updates in which the shared state is unchanged between
versions (and/or is backward compatible). However, to
the best of our knowledge these systems have not looked
closely at the controller upgrade problem when (parts
of) the control program itself must be upgraded in a
semantics-changing manner, especially when the new
controller may use different data structures and algo-
rithms than the old one. Morpheus handles this sit-
uation using the update protocol defined in Section 4,
which quiesces the controller instances, initiates a trans-
formation of the shared store’s data according to the
programmer’s specification (if needed), and then starts
the new controller versions. We believe this same ap-
proach could be applied to these distributed controllers
as well.

Dynamic Software Upgrades. The approach we take in
Morpheus is inspired by a line of work on dynamic soft-
ware updating (DSU) [15, 20, 13, 21], which advocates
the same basic approach: pause a program threads at
quiescent points, transform and transfer state into the
new version of the program, and resume execution in the
updated version of a program. Most prior DSU work
has focused on updating a running process (“bring-
ing the new code to the old (but transformed) data”)
whereas for Morpheus the same effect is achieved by
starting a new process with the relevant state (“bring-
ing the old (but transformed) data to the new code”).
We used our KVolve [24] system for dynamically evolve
Redis databases in our implementation of Morpheus.
While prior DSU work has considered the problem up-
dating network software generally [25] (including for
“active” networks [14]), ours is the first to apply a
general-purpose solution to (distributed) software-defined
network controllers in particular.

7. CONCLUSIONS

This paper has proposed dynamic update by state
transfer as a general-purpose approach to dynamically
update software-defined network controllers. The ap-
proach works by providing direct access to the relevant



state in the running controller, and initializing the new
controller’s state as function of the existing state. This
approach is in contrast to alternatives that attempt to
automatically reproduce the relevant state, but may not
always succeed. We implemented the approach as part
of Morpheus, a new SDN controller whose design is in-
spired by industrial-style controllers. Morpheus pro-
vides means to specify transformations in a persistent
store, and employs an update coordination protocol to
safely deploy the transformation. Experiments with
Morpheus show that dynamic update by state trans-
fer is both natural and effective: it supports seamless
updates to live networks at low overhead and little pro-
grammer effort, while prior approaches would result in
disruption, incorrect behavior, or both.
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