
Ahmed El-Hassany Petar Tsankov Laurent Vanbever Martin Vechev

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

Ahmed El-Hassany

I shouldn’t be the one giving this talk…

Third year PhD student @ETH Zürich

Papers at NSDI, SIGCOMM, PLDI, CAV, SOSR, …

Check him out at hassany.ps

Ahmed El-Hassany Petar Tsankov Laurent Vanbever Martin Vechev

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

Yes.  
The Internet seems to be better off during week-ends…

Yes.  
The Internet seems to be better off during week-ends…

“Human factors are responsible

for 50% to 80% of network outages”

Juniper Networks, What’s Behind Network Downtime?, 2008

https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

Someone in Google fat-thumbed a

Border Gateway Protocol (BGP) advertisement

and sent Japanese Internet traffic into a black hole.

In August 2017

Someone in Google fat-thumbed a

Border Gateway Protocol (BGP) advertisement

and sent Japanese Internet traffic into a black hole.

Traffic from Japanese giants like NTT and KDDI  
was sent to Google on the expectation

it would be treated as transit.

[…]

In August 2017

Someone in Google fat-thumbed a

Border Gateway Protocol (BGP) advertisement

and sent Japanese Internet traffic into a black hole.

The outage in Japan only lasted a couple of hours

but was so severe that […] the country's

Internal Affairs and Communications ministries

want carriers to report on what went wrong.

[…] Traffic from Japanese giants like NTT and KDDI  
was sent to Google on the expectation

it would be treated as transit.

In August 2017

Configuration synthesis addresses this problem by deriving 
low-level configurations from high-level requirements

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	

router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	

Network model

Physical topology

High-level requirements

!	
!	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Inputs Outputs

Synthesizer

Configuration synthesis addresses this problem by deriving 
low-level configurations from high-level requirements

given by the operator

Configuration synthesis:

a booming research area!

Propane [SIGCOMM’16]

PropaneAT [PLDI’17]

SyNET [CAV’17]

Genesis [POPL’17] forwarding rules

BGP configurations

OSPF + BGP configurations

Out of high-level requirements,

automatically derive…

Zeppelin [SIGMETRICS’18]

Synthesizing configuration is great, but comes with

challenges preventing a wide adoption

Existing synthesizers…

Problem #1 
interpretability

can produce configurations that  
widely differ from humanly-generated ones

Existing synthesizers…

Problem #1 
interpretability

can produce configurations that  
widely differ from humanly-generated ones

Problem #2

continuity

can produce widely different configurations 
given slightly different requirements

Existing synthesizers…

Problem #1 
interpretability

can produce configurations that  
widely differ from humanly-generated ones

Problem #2

continuity

can produce widely different configurations 
given slightly different requirements

Problem #3

deployability

cannot flexibly adapt to operational requirements,

requiring configuration heterogeneity

Existing synthesizers…

A key issue is that synthesizers do not provide operators

with a fine-grained control over the synthesized configurations

Introducing…

NetComplete

A configuration with “holes”

NetComplete allows network operators to flexibly express

their intents through configuration sketches

route-map	imp-p1	permit	10	
		?	

route-map	exp-p1	?	10	
		match	community	C2		
route-map	exp-p2	?	20		
		match	community	C1	
...

interface	TenGigabitEthernet1/1/1	
		ip	address	?	?	
		ip	ospf	cost	10	<	?	<	100	

router	ospf	100	
		?	
		...	

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	?	
ip	community-list	C2	permit	?

interface	TenGigabitEthernet1/1/1	
		ip	address	?	?	
		ip	ospf	cost	10	<	?	<	100	

router	ospf	100	
		?	
		...	

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	?	
ip	community-list	C2	permit	?

Holes can identify

specific attributes such as:

IP addresses

link costs

BGP local preferences

interface	TenGigabitEthernet1/1/1	
		ip	address	?	?	
		ip	ospf	cost	10	<	?	<	100	

router	ospf	100	
		?	
		...	

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	?	
ip	community-list	C2	permit	?

Holes can also identify

entire pieces of the configuration

route-map	imp-p1	permit	10	
		?	

route-map	exp-p1	?	10	
		match	community	C2		
route-map	exp-p2	?	20		
		match	community	C1	
...

NetComplete “autocompletes” the holes such that

the output configuration complies with the requirements

route-map	imp-p1	permit	10	
		?	

route-map	exp-p1	?	10	
		match	community	C2		
route-map	exp-p2	?	20		
		match	community	C1	
...

interface	TenGigabitEthernet1/1/1	
		ip	address	?	?	
		ip	ospf	cost	10	<	?	<	100	

router	ospf	100	
		?	
		...	

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	?	
ip	community-list	C2	permit	?

route-map	imp-p1	permit	10	
		set	community	6500:1	
		set	local-pref	50	
route-map	exp-p1	permit	10	
		match	community	C2		
route-map	exp-p2	deny	20		
		match	community	C1	
...

interface	TenGigabitEthernet1/1/1	
		ip	address	10.0.0.1	255.255.255.254	
		ip	ospf	cost	15	

router	ospf	100	
		network	10.0.0.1	0.0.0.1	area	0.0.0.0	
			

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	6500:1	
ip	community-list	C2	permit	6500:2

NetComplete reduces the autocompletion problem

to a constraint satisfaction problem

Encode the as a logical formula (in SMT)

protocol semantics

high-level requirements

partial configurations

First

Use a solver (Z3) to find an assignment for the undefined

configuration variables s.t. the formula evaluates to True

Then

Encode the as a logical formula (in SMT)

protocol semantics

high-level requirements

partial configurations

First

Main challenge:

Scalability

network-specific

heuristics

Insight #1 Insight #2

partial evaluation

search space navigation search space reduction

optimized encoding
BGP synthesis1

OSPF synthesis
counter-examples-based

2

Evaluation
flexible, yet scalable

3

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

?

?

optimized encoding
BGP synthesis1

OSPF synthesis
counter-examples-based

Evaluation
flexible, yet scalable

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

?

?

NetComplete autocompletes router-level BGP policies by

encoding the desired BGP behavior as a logical formula

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

how should the network forward traffic

concrete, part of the input

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.BGPselect(A1,A2) ∧

R1.BGPselect(A2,A3) ∧ …

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

how do BGP routers select routes

concrete, protocol semantic

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGPselect(X,Y)	⇔	(X.LocalPref	>	Y.LocalPref)	∨	…

how routes should be modified

symbolic, to be found

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.SetLocalPref(A1) = VarX

R1.SetLocalPref(A2) = 200

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.SetLocalPref(A1) = VarX

R1.SetLocalPref(A2) = 200

R1.BGPselect(A1,A2) ∧

R1.BGPselect(A2,A3) ∧ …

BGPselect(X,Y)	⇔	(X.LocalPref	>	Y.LocalPref)	∨	…

Solving this logical formula consists in assigning

each symbolic variable with a concrete value

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.SetLocalPref(A1) = VarX

R1.SetLocalPref(A2) = 200

R1.BGPselect(A1,A2) ∧

R1.BGPselect(A2,A3) ∧ …

BGPselect(X,Y)	⇔	(X.LocalPref	>	Y.LocalPref)	∨	…

VarX := 250 M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.SetLocalPref(A1) = VarX

R1.SetLocalPref(A2) = 200

R1.BGPselect(A1,A2) ∧

R1.BGPselect(A2,A3) ∧ …

BGPselect(X,Y)	⇔	(X.LocalPref	>	Y.LocalPref)	∨	…

Naive encodings lead to complex constraints

that cannot be solved in a reasonable time

Naive encodings lead to complex constraints

that cannot be solved in a reasonable time

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGP x OSPF huge search spacechallenges

Naive encodings lead to complex constraints

that cannot be solved in a reasonable time

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGP x OSPF huge search space

partial evaluationiterative synthesis

challenges

solutions

Naive encodings lead to complex constraints

that cannot be solved in a reasonable time

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGP x OSPF huge search space

partial evaluationiterative synthesis

challenges

solutions

NetComplete encodes reduced policies by relying

on the requirements and the sketches

Capture how announcements should propagate

using the requirements

Step 1

Output BGP propagation graph

NetComplete encodes reduced policies by relying

on the requirements and the sketches

Capture how announcements should propagate

Combine the graph with constraints imposed by sketches

using the requirements

via symbolic execution

Step 1

Step 2

Output BGP propagation graph

Output partially evaluated formulas

NetComplete encodes reduced policies by relying

on the requirements and the sketches

NetComplete relies on the requirements to figure out

where BGP announcements should (not) propagate

Requirement

Only customers should be able to

send traffic to Provider #2

Provider 2Provider 1

Provider 3

Customer

NetComplete relies on the requirements to figure out

where BGP announcements should (not) propagate

Requirement

Only customers should be able to

send traffic to Provider #2

Provider 2Provider 1

Provider 3

Customer

NetComplete relies on the requirements to figure out

where BGP announcements should (not) propagate

B C

A D

P1 P2

P3

Cust

blocked

blocked

NetComplete computes one BGP propagation graph

per equivalence class

Provider 2Provider 1

Provider 3

Customer

B C

A D

P1 P2

P3

Cust

Encode BGP policies  
as SMT formulas

Result is a partially
evaluated formula

permitted	=	True	
local_pref	=	?	
communities	=	?	
…

Inject symbolic
announcement

For	all	ann	in	Announcements:	
	ann.communities	=	[External,	Var1]	
	ann.local_pref	=	100

permitted	=	True	
local_pref	=	100	
communities	=	[External,	Var1]	
…

NetComplete concretizes symbolic announcements

by propagating them through the graph and sketches

optimized encoding
BGP synthesis

OSPF synthesis
counter-examples-based

2

Evaluation
flexible, yet scalable

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

?

?

As for BGP, Netcomplete phrases the problem of finding weights

as a constraint satisfaction problem

A D

CB

Consider this initial configuration in which

the (A,C) traffic is forwarded along the direct link

150

1

10

10

150
1

For performance reasons,

the operators want to enable load-balancing

A D

CB

What should be the weights for this to happen?

A D

CB

input requirements

DA

B C

input requirements synthesis procedure

DA

B C

∀X ∈ Paths(A,C)\Reqs

input requirements

Cost(A→C) = Cost(A→D→C) < Cost(X)

synthesis procedure

DA

B C

∀X ∈ Paths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ Paths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ Paths(A,C)\Reqs

input requirements

150 150
300

200

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedure

150

Synthesized weights

DA

B C

150

This was easy, but…

it does not scale

∀X ∈ Paths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

∀X ∈ Paths(A,C)\Reqs

There can be an exponential number of paths
between A and C…

An contemporary approach to synthesis where

a solution is iteratively learned from counter-examples

To scale, NetComplete leverages

Counter-Example Guided Inductive Synthesis (CEGIS)

While enumerating all paths is hard,

computing shortest paths given weights is easy!

D

input requirements

A

B C

input requirements synthesis procedure

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements synthesis procedure

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements synthesis procedure

Sample: { [A,B,D,C] }

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements

Cost(A→C) = Cost(A→D→C) < Cost(X)

synthesis procedure

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements

150 150
300

100

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedure

150

Synthesized weights

DA

B C

300

∀X ∈ SamplePaths(A,C)\Reqs

150 150
300

100

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

150

DA

B C

300

The synthesized weights are incorrect:

cost(A → B → C]) = 250 < cost(A → C) = 300

actual path

∀X ∈ SamplePaths(A,C)\Reqs

Sample: { [A,B,D,C] } U { [A,B,C] }

DA

B C

We simply add the counter example to  
SamplePaths and repeat the procedure

The entire procedure usually converges in few iterations

making it very fast in practice

optimized encoding
BGP synthesis

OSPF synthesis
counter-examples-based

Evaluation
flexible, yet scalable

3

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

?

?

Can NetComplete synthesize large-scale configurations?

How does the concreteness of the sketch influence the running time?

Question #1

Question #2

Code ~10K lines of Python

SMT-LIB v2 and Z3

Input OSPF, BGP, static routes

Output Cisco-compatible configurations

as partial and concrete configs

validated with actual Cisco routers

We fully implemented NetComplete

and showed its practicality

Methodology

15 topologies from Topology Zoo

small, medium, and large

Simple, Any, ECMP, and ordered (random)

Built from a fully concrete configuration

using OSPF/BGP

from which we made a % of the variables symbolic

Topology

Requirement

Sketch

NetComplete synthesizes configurations

for large networks in few minutes

Network  
size

Reqs.

type

Synthesis

time

OSPF synthesis
time (sec)

NetComplete synthesizes configurations

for large networks in few minutes

16 reqs, 50% symbolic, 5 repet.

CEGIS enabled

settings

Large Simple

ECMP

Ordered

14s

13s

249s

~150 nodes

Without CEGIS, OSPF synthesis is

>100x slower and often timeouts

0 20 40 60 80 100

Percentage of symbolic edge costs

0

500

1000

1500

2000

T
im

e
[s

]

% of nodes changing next-hop
0 20 60 10040

% of weights left symbolic in the sketch
60

0

0.1

2000

1000

1500

OSPF synthesis
time (sec)

NetComplete synthesis time increases

as the sketch becomes more symbolic

16 reqs

large topos.

settings

0 20 40 60 80 100

Percentage of symbolic edge costs

0

500

1000

1500

2000

T
im

e
[s

]

% of nodes changing next-hop
0 20 60 10040 60

0

0.1

2000

1000

1500

NetComplete synthesis time increases

as the sketch becomes more symbolic

% of weights left symbolic in the sketch

OSPF synthesis
time (sec)

16 reqs

large topos.

settings

optimized encoding
BGP synthesis

OSPF synthesis
counter-examples-based

Evaluation
flexible, yet scalable

?

?

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

Autocompletes configurations with “holes”

synthesizes configurations for large network in minutes

Phrases the problem as constraints satisfaction

Scales to realistic network size

leaving the concrete parts intact

scales using network-specific heuristics & partial evaluation

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

Ahmed El-Hassany Petar Tsankov Laurent Vanbever Martin Vechev

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

