
SDNschool 2015

Laurent Vanbever

July, 3 2015

ETH Zürich

SDN research directions

Promising problems to invest time on

3 110

3 110

of citations of the original

OpenFlow paper in ~6 years

SDN is still growing

Networking Systems Security PL
Distributed  
Algorithms

SIGCOMM

NSDI

HotNets

CoNEXT

OSDI

SOSP

SOCC

PODC

DISC

PLDI

POPL

OOPSLA

CCS

NDSS

Usenix  
 Security

SDN is reaching into

always more CS communities

Why?!

SDN finally enables us to innovate,
at a much faster pace

closed software

closed hardware

Cisco™ device

Before SDN

SDN controller control software running on x86

standardized hardware

standardized interface (OpenFlow)

SDN device

After SDN

App

1

App

2

App

3

Innovation is taking place
at each layer of the SDN stack

SDN controller

Management plane

App

1

App

2

App

3

SDN controller

Management plane

App

1

App

2

App

3

network orchestration

SDN controller

Management plane

App

1

App

2

App

3

network orchestration

novel applications

SDN controller

Management plane

App

1

App

2

App

3

network orchestration

novel applications

architecture, mgmt abstraction

architecture, mgmt abstraction

network orchestration

novel applications

SDN controller

Management plane

App

1

App

2

App

3

re-programmable hardware

forwarding abstraction

Innovation is taking place
across layers of the SDN stack

architecture, mgmt abstraction

re-programmable hardware

forwarding abstraction

network orchestration

novel applications

SDN controller

Management plane

App

1

App

2

App

3

security

architecture, mgmt abstraction

re-programmable hardware

forwarding abstraction

network orchestration

novel applications

SDN controller

Management plane

App

1

App

2

App

3

verificationsecurity

Innovation is taking place
to deploy SDN

architecture, mgmt abstraction

re-programmable hardware

forwarding abstraction

network orchestration

novel applications

SDN controller

Management plane

App

1

App

2

App

3

verificationsecurity

deployment

My SDN research initiatives so far

SDN controller

Management plane

App

1

App

2

App

3

verificationsecurity

SDX, SoftCell, Morpheus, Update

Fibbing

Cloud bursting (NFV)

SPRITE

SDNRacer

ChaosMonkey

deployment Hybrid SDN Supercharged

1

2

3

4

Go beyond OpenFlow

Secure SDN platforms

Incentivize deployment

Extend SDN reach

SDN research directions

Promising problems to invest time on

1 Go beyond OpenFlow

Secure SDN platforms

Incentivize deployment

Extend SDN reach

SDN research directions

Promising problems to invest time on

Wouldn’t it be great to manage

an existing network “à la SDN”?

Wouldn’t it be great to manage

an existing network “à la SDN”?

what does it mean?

Cisco Juniper Alcatel

Control-Plane

Data-Plane

Control-Plane

Data-Plane

Control-Plane

Data-Plane

Cisco IOS Juniper JunOS Alcatel TimOS

Instead of configuring a network

using configuration “languages” …

Cisco Juniper Alcatel

Control-Plane

Data-Plane

Control-Plane

Data-Plane

Control-Plane

Data-Plane

SDN Controller

Forwarding entries

(Floodlight, OpenDaylight,…)

… program it from a central SDN controller

For that, we need an API

that any router can understand

Cisco Juniper Alcatel

Control-Plane

Data-Plane

Control-Plane

Data-Plane

Control-Plane

Data-Plane

SDN Controller

? ? ?

Routing protocols are perfect candidates

to act as such API

e.g., shortest-path routing

nearly all routers support OSPF

routers must speak the same language

messages are standardized

behaviors are well-defined

implementations are widely available

Fibbing

@SIGCOMM’15

Fibbing
= lying

@SIGCOMM’15

to control router’s forwarding table

Fibbing

@SIGCOMM’15

Forwarding

Paths

Routing 
Messages

MPLS

OSPF

BGP

A router implements a function

from routing messages to forwarding paths

IP router

functioninput output

The forwarding paths are known,

provided by the operators or by the controller

Forwarding

Paths

Known

Routing 
Messages

MPLS

OSPF

BGP

functioninput output

input output

Known

The function is known, from the protocols’

specification & the configuration

Forwarding

Paths

Routing 
Messages

MPLS

OSPF

BGP

function

Inverse

Given a path and a function, our framework computes

corresponding routing messages by inverting the function

Forwarding

Paths

Routing 
Messages

MPLS

OSPF

BGP

functioninput output

3

10

1

1

A B

C D

destinationsource

traffic flow

Consider this network where a source

sends traffic to 2 destinations

3

10

1

1

A B

C

desired

3

10

1

1

A B

C D

initial

As congestion appears, the operator wants

to shift away one flow from (C,D)

D

impossible to achieve by  
reweighing the links

Moving only one flow is impossible though

as both destinations are connected to D

desired

3

10

1

1

A B

C
3

10

1

1

A B

C D D

initial

3

1

1

A B

C

Let’s lie to the router

10

D

3

1

1

A B

C

Let’s lie to the router

10

D

Fibbing  
 controller

routing
session

3

1

1

A B

C

Let’s lie to the router, by injecting

fake nodes, links and destinations

10

D

Fibbing  
 controller

routing
session

3

1

1

A B

C

Let’s lie to the router, by injecting

fake nodes, links and destinations

10

D

Fibbing  
 controller

A

C

Lie

15

11

3

1

1

A B

C

Lies are propagated network-wide

by the protocol

10

D

Fibbing  
 controller

A

C

A

C

Fibbing  
 controller

3

1

1

A B

C

10

D

15

1

1

After the injection, this is the topology seen

by all routers, on which they compute Dijkstra

Fibbing  
 controller

3

1

1

A B

C

Now, C prefers the virtual node (cost 2)

to reach the blue destination…

1

15

D

10
1

Fibbing  
 controller

3

1

1

A B

C

As the virtual node does not really exist,

actual traffic is physically sent to A

1

15

D

10
1

Fibbing is powerful

Theorem

Fibbing is powerful

Fibbing can program

any set of non-contradictory paths

Theorem

Fibbing is powerful

Fibbing can program

any set of non-contradictory paths

Theorem

Fibbing is powerful

any path is loop-free

paths are consistent

(e.g. [s1, a, b, d] and

[s2, b, a, d] are inconsistent)

(e.g., [s1, a, b, a, d] is not possible)

Fibbing can program

any set of non-contradictory paths

space

of lies

time

to compute lies

Fibbing scales

Augment topology  

within a sec.

Augmented topologies

are small. Much below

what routers can support.

We implemented a fully-fledged Fibbing

prototype and tested it against real routers

We implemented a fully-fledged Fibbing

prototype and tested it against real routers

How many lies can a router sustain?

How long does it take to process a lie?

2 measurements

1000

5 000

10 000

router
memory (MB)

0.7

76.0

153

50 000

100 000

6.8

14.5

fake
nodes

DRAM is cheap

Existing routers can easily sustain

Fibbing-induced load, even with huge topologies

Because it is entirely distributed,
programming forwarding entries is fast

1000

5 000

10 000

50 000

100 000

fake
nodes

installation
time (s)

0.9

44.7

89.50

4.5

8.9

894.50 μs/entry

So… it’s done basically?

So… it’s done basically?

No… far from it!

We want to create a momentum

around Fibbing

Improve the Fibbing platform

e.g., fast (local) convergence, support for NFV

Build an OpenFlow to Fibbing interface

one network controller to rule them all

Build applications on top of Fibbing

checkout www.fibbing.net (soon!)

http://www.fibbing.net

Fibbing is only a first step

How can we abstract other technologies?

e.g., Telekinesis for L2 (SOSR’15)

How can we combine them—in a programmatic way

“classical” compilation problem

One example where we successfully

abstracted the behavior of an existing technology

2

Go beyond OpenFlow

Secure SDN platforms

Incentivize deployment

Extend SDN reach

SDN research directions

Promising problems to invest time on

On the one hand,

SDN reduces the network attack surface

Traditional SDN

On the one hand,

SDN reduces the network attack surface

visibility

control

code bases

expressiveness

Traditional SDN

On the one hand,

SDN reduces the network attack surface

1 (controller)

indirect

dozens

declarative

network-widepoor

fine-grainedcoarse-grained

On the one hand,

SDN reduces the network attack surface

visibility

control

code bases

expressiveness

Traditional SDN

http://www.networkworld.com/article/2937787/sdn/nsa-uses-openflow-for-tracking-its-network.html

http://www.networkworld.com/article/2937787/sdn/nsa-uses-openflow-for-tracking-its-network.html

On the other hand,

SDN introduces new vectors of attacks

Hijack the controller

take control of the brain & the body

DDoS the controller

why kill a host if you can kill the network?

Hijack SDN applications

you say “yes”, I say “no”

Hijack the controller

take control of the brain & the body

DDoS the controller

why kill a host if you can kill the network?

Hijack SDN applications

you say “yes”, I say “no”

limit reactive app

distributed controller

authorization

framework

protection & detection

mechanisms

Many novel research questions!

3

Go beyond OpenFlow

Secure SDN platforms

Incentivize deployment

Extend SDN reach

SDN research directions

Promising problems to invest time on

To succeed, SDN-based technologies

should possess at least 3 characteristics

Small investment

Low risk

High return

provide benefits

under partial deployment

(ideally, with a single switch)

Low risk

High return

Small investment

To succeed, SDN-based technologies

should possess at least 3 characteristics

Small investment

Low risk

High return

require minimum changes

to operational practices

be compatible with existing

technologies

To succeed, SDN-based technologies

should possess at least 3 characteristics

Small investment

Low risk

High return solve a timely problem

To succeed, SDN-based technologies

should possess at least 3 characteristics

Supercharged

Supercharged

boost routers performance

by combining them with SDN devices

IP routers are pretty slow to converge

upon link and node failures

R1

R1

0

1

R3

R2

R1

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

R1

512k IP 
prefixes

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

prefix Next-Hop

R1’s Forwarding Table

R1

512k IP 
prefixes

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(01:aa, 0)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

R1

512k IP 
prefixes

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

All 512k entries point to R2

because it is cheaper

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(01:aa, 0)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

R1

512k IP 
prefixes

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

Upon failure of R2,

all 512k entries have to be updated

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(01:aa, 0)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

Upon failure of R2,

all 512k entries have to be updated

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(02:bb, 1)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(02:bb, 1)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(02:bb, 1)

(01:aa, 0)

(01:aa, 0)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(02:bb, 1)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(02:bb, 1)

(02:bb, 1)

(01:aa, 0)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(02:bb, 1)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(02:bb, 1)

(02:bb, 1)

(02:bb, 1)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

We measured how long it takes

in our home network

ETH recent routers

25 deployed

Cisco Nexus 9k

convergence
time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150convergence

time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

worst-case

median case

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150convergence

time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

worst-case

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

~2.5 min.
Traffic can be lost for several minutes

Upon failure, all of them have to be updated

inefficient, but also unnecessary

Entries do not share any information

even if they are identical

The problem is that

forwarding tables are flat

Upon failure, all of them have to be updated

inefficient, but also unnecessary

Entries do not share any information

even if they are identical

Solution: introduce a hierarchy

as with any problem in CS…

The problem is that

forwarding tables are flat

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(01:aa, 0)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

Router Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

replace this…

port 0

port 1

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

0x666

…… …

pointer

256k
…… …

100.0.0.0/8

0x666

0x666

0x666

pointer NH

0x666 (01:aa, 0)

port 0

port 1

… with that

Mapping table

Pointer table

Router Forwarding Table

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

0x666

…… …

pointer

256k
…… …

100.0.0.0/8

0x666

0x666

0x666

port 0

port 1

Upon failures, we update the pointer table

Mapping table

Router Forwarding Table

pointer NH

0x666

Pointer table

(01:aa, 0)

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

0x666

…… …

pointer

256k
…… …

100.0.0.0/8

0x666

0x666

0x666

port 0

port 1

Here, we only need to do one update

Mapping table

Router Forwarding Table

pointer NH

0x666

Pointer table

(02:bb, 1)

Limited availability

only a few vendors, on few models

Expensive

by orders of magnitude

Limited benefits

of fast convergence, if not used network-wide

Nowadays, only high-end routers

have hierarchical forwarding table

prefix

1.0.0.0/241 0x666
…… …

pointer

512k 200.99.0.0/24 0x666

pointer NH

0x666 (02:bb, 1)

Mapping table

Pointer table

We can build a hierarchical table

prefix

1.0.0.0/241 0x666
…… …

pointer

512k 200.99.0.0/24 0x666

pointer NH

0x666 (02:bb, 1)

IP router

SDN switch

Mapping table

Pointer table

We can build a hierarchical table

using two adjacent devices

We have implemented a fully-functional

“router supercharger”

Supercharged router

SDN

Routing
controller

SDN 
controller

…

Routing
sessions

OpenFlow

REST

peern

peer1

peer2

We used it to supercharge

the same router as before

ETH recent routers

25 deployed

Cisco Nexus 9k

~2k$

(old) SDN HP switch

cost

+

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150convergence

time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

While the router took more than 2 min

to converge in the worst-case

convergence
time (s)

of prefixes

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

150ms
supercharged

The supercharged router systematically

converged within 150ms

Other aspects of a router

can be supercharged

monitor & overwrite poor routers decisions

precise, micro-flow based measurements

offload to SDN if no local forwarding entry

memory size

load-balancing

monitoring

4

Go beyond OpenFlow

Secure SDN platforms

Incentivize deployment

Extend SDN reach

SDN research directions

Promising problems to invest time on

So far, SDN reach has been limited

to few network types

Data-Center network

Cellular network

Wide-Area network

Enterprise network

So far, SDN reach has been limited

to few network types

Data-Center network

Cellular network

Wide-Area network

Enterprise network

On-chip network

Campus network

Access network

Transit network

There are many more terrain

to conquer!

Today SDN targeted the operation of switches

within a single domain

Tomorrow Let’s bring SDN to the Internet

Internet SDN

How do you deploy SDN in a network

 composed of 50,000 subnetworks?

How do you deploy SDN in a network

 composed of 50,000 subnetworks?

Well, you don’t …

Instead, you aim at finding locations where

deploying SDN can have the most impact

Instead, you aim at finding locations where

deploying SDN can have the most impact

connect a large number of networks

carry a large amount of traffic

Deploy SDN in locations that

are opened to innovation

Internet eXchange Points (IXP)

meet all the criteria

BGP Route Server

Mobile peering

Open peering…

3.7 Tb/s (peak)

721 networks

AMS-IX

https://www.ams-ix.net

connect a large number of networks

carry a large amount of traffic

are opened to innovation

Deploy SDN in locations that

https://www.ams-ix.net

A single deployment

can have a large impact

AMS-IX

https://www.ams-ix.net

connect a large number of networks

carry a large amount of traffic

are opened to innovation

Deploy SDN in locations that

BGP Route Server

Mobile peering

Open peering…

3.7 Tb/s (peak)

721 networks

https://www.ams-ix.net

SDX = SDN + IXP

http://sdx.cs.princeton.edu/

@SIGCOMM’14

http://sdx.cs.princeton.edu/

Enable fine-grained inter domain policies

bringing new features while simplifying operations

Augment the IXP data-plane with SDN capabilities

keeping default forwarding and routing behavior

SDX = SDN + IXP

Enable fine-grained inter domain policies

bringing new features while simplifying operations

… with scalability and correctness in mind

supporting the load of a large IXP and resolving conflicts

Augment the IXP data-plane with SDN capabilities

keeping default forwarding and routing behavior

SDX = SDN + IXP

SDX

Content providers

Eyeballs providers

Transit providers

SDX is a platform that enables multiple stakeholders

to define policies/apps over a shared infrastructure

SDX enables a wide range of novel applications

Wide-area load balancing

Upstream blocking of DoS attacks

Influence BGP path selectionremote-control

Application-specific peeringpeering

Prevent/block policy violationsecurity

Prevent participants communication

Inbound Traffic Engineering

Traffic offloading

Middlebox traffic steeringforwarding optimization

Fast convergence

An IXP is a large layer-2 domain where

participant routers exchange routes using BGP

IXP Switching Fabric

Edge router

Participant #1

Participant #2

Participant #3

An IXP is a large layer-2 domain where

participant routers exchange routes using BGP

eBGP sessions

eBGP routes

Participant #1

Participant #2

Participant #3

Router Server

To alleviate the need of establishing eBGP sessions,

IXP often provides a Route Server (route multiplexer)

10.0.0.0/8

10.0.0.0/8

10.0.0.0/8

Participant #1

Participant #2

Participant #3

IP traffic is exchanged directly between

participants—IXP is forwarding transparent

Router Server

IP traffic

Participant #1

Participant #2

Participant #3

Participant #1

Participant #2

Participant #3

Router Server

With respect to a traditional IXP, SDX…

data-plane relies on SDN-capable devices

Participant #1

Participant #2

Participant #3

Router Server

With respect to a traditional IXP, SDX’s

data-plane relies on SDN-capable devices

SDN

With respect to a traditional IXP, SDX’s

control-plane relies on a SDN controller

SDN controller

also a Route Server

BGP sessions

Participant #1

Participant #2

Participant #3

SDX participants express their forwarding policies  
in a high-level language (*)

(*) http://frenetic-lang.org/pyretic/

http://frenetic-lang.org/pyretic/

SDX policies are composed of 
a pattern and some actions

match	
 (
),	
 then	
 (
)Pattern Actions

dstip

srcip

srcmac

dstmac

dstport

srcport

protocol

vlan_id

eth_type

tos

,	
 &&,	
 ||

Pattern

Pattern selects packets based on any header fields

while Actions forward or modify the selected packets

match	
 (
),	
 then	
 (
)Actions

drop

forward

rewrite

Pattern selects packets based on any header fields,

while actions forward or modify the selected packets

Actions

match	
 (
),	
 then	
 (
)Pattern

SDN controller

Each participant writes policies independently

and transmits them to the controller

Participant #1

Participant #3 policy

Participant #2 policy

match(dstport=80),	
 fwd(#3)
match(dstport=22),	
 fwd(#1)

match(srcip=0*),	
 fwd(left)
match(srcip=1*),	
 fwd(right)

SDN controller

SDN

forwarding entries

Given the participant policies,

the controller compiles them to SDN forwarding rules

Participant #3 policy

Participant #2 policy

match(dstport=80),	
 fwd(#3)
match(dstport=22),	
 fwd(#1)

Participant #1

match(srcip=0*),	
 fwd(left)
match(srcip=1*),	
 fwd(right)

Given the participant policies,

the controller compiles them to SDN forwarding rules

Ensuring isolation

Resolving policies conflict

Ensuring compatibility with BGP

Given the participant policies,

the controller compiles them to SDN forwarding rules

Ensuring isolation

Resolving policies conflict

Ensuring compatibility with BGP

Each participant controls

one virtual switch

connected to participants

it can communicate with

Given the participant policies,

the controller compiles them to SDN forwarding rules

Ensuring isolation

Resolving policies conflict

Ensuring compatibility with BGP

Participant policies are

sequentially composed

in an order that respects

business relationships

Given the participant policies,

the controller compiles them to SDN forwarding rules

Ensuring isolation

Ensuring compatibility with BGP

policies are augmented

with BGP information

guaranteed correctness

and reachability

Resolving policies conflict

It scales

to 100+ of participants

It is getting deployed

NSA plans to use it to connect federal agencies

It runs

check out https://github.com/sdn-ixp/sdx-ryu (new!)

SDX is a promising first step

towards fixing Internet routing

https://github.com/sdn-ixp/sdx-ryu

So… it’s done basically?

So… it’s done basically?

No… far from it!

SDX currently consider a single deployment

What about interconnecting SDX platforms?

What about replacing BGP completely 
with a SDX-mediated Internet?

“Let’s take over the world”

Towards a SDX-mediated Internet

Simple, scalable & policy neutral Internet core

SDX-to-SDX only, just carry bits

In-synch with the current Internet ecosystem

content consumer vs content provider vs transit network

New endpoint peering paradigm

more flexible, tailored to the traffic exchanged

Many novel research questions!

Simple, scalable & policy neutral Internet core

SDX-to-SDX only, just carry bits

In-synch with the current Internet ecosystem

content consumer vs content provider vs transit network

New endpoint peering paradigm

more flexible, tailored to the traffic exchanged

policy 
analysis?

routing

mechanism?

new provider

type?

SDX is currently positioned between networks

What about using the SDX platform internally…

iSDX

iSDX

iSDX

iSDX

iSDX
iSDX

iSDX

What about using the SDX platform internally…

…to better manage peerings with neighbouring ASes

iSDX

iSDX

iSDX iSDX
iSDX

iSDX

iSDX

Current transit networks

are still managed archaically

static configuration

while Internet traffic is inherently dynamic

lack of visibility

coarse-grained measurements (mostly for billing)

per-neighbor configuration

one session at the time

SDX-mediated peering would bring

much-needed flexibility

automated & dynamic optimization

to ensure compliance and ease network provisioning

fine-grained, network-wide visibility

improved decisions, troubleshooting & billing (!)

high-level, declarative objective

“equally load-balance Netflix on 3 given links”

automated & dynamic optimization

to ensure compliance and ease network provisioning

fine-grained, network-wide visibility

improved decisions, troubleshooting & billing (!)

high-level, declarative objective

“equally load-balance Netflix on 3 given links”

Many novel research questions!

policy 
language?

correctness

guarantees?

scalability?

Go beyond OpenFlow

Secure SDN platforms

Incentivize deployment

Extend SDN reach

SDN research directions

Promising problems to invest time on

SDN holds great research opportunities

SDN is exciting

tons of interest—from academia & industry

SDN is happening

some success already

SDN is still in its infancy

lots of moving parts—and opportunities

Laurent Vanbever

www.vanbever.eu

Wishing you every success

in your future SDN research

SDN research directions

Promising problems to invest time on

http://www.vanbever.eu

