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Abstract

Software-Defined Internet eXchange Points (SDXes) are re-
cently gaining momentum, with several SDXes now running
in production. The deployment of multiple SDXes on the In-
ternet raises the question of whether the interactions between
these SDXes will cause correctness problems, since SDX
policies can deflect traffic away from the default BGP route
for a prefix, effectively breaking the congruence between the
control plane and data plane. Although one deflection on a
path will never cause loops to occur, combining multiple de-
flections at different SDXes can lead to persistent forwarding
loops that the control plane never sees.

In this paper, we introduce SIDR, a coordination framework
that enables SDXes to verify the end-to-end correctness (i.e.,
loop freedom) of an SDX policy. The challenge behind SIDR
is to strike a balance between privacy, scalability, and flexi-
bility. SIDR addresses these challenges by: (i) not requiring
SDXes to disclose the flow space their SDX policies act on,
only the next-hop they deflect to; and (ii) minimizing the num-
ber of SDXes that must exchange state to detect correctness
problems. SIDR manages to preserve the flexibility of SDX
policies by activating the vast majority of the safe policies,
the policies that do not create a loop. We implemented SIDR
on the SDX platform and showed its practical effectiveness:
SIDR can activate 91% of all safe policies while preserving
privacy and scalability and can perform correctness checks in
about one second.

CCS Concepts:
Networks→Network architectures; Programmable networks;

Keywords:
Software Defined Networking (SDN); Internet Exchange
Point (IXP); Routing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SOSR’17, April 03–04, 2017, Santa Clara, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4947-5/17/04 ...$15.00

DOI: http://dx.doi.org/10.1145/3050220.3050221

G B

C

D

F E

A

m(443) >> fwd(G)

m(p1) >> fwd(D)

SDX2

SDX1

p1 
⋮

pn

Figure 1: IP traffic for AS A is caught in a persistent forwarding
loop due to the SDX peer C at SDX1 and F at SDX2 independently
deflecting traffic from the announced BGP path via SDX policies.

1 Introduction
Software-Defined Internet eXchange Points [13, 14] (SDXes)
are seeing increased deployment on the Internet. Not only
have multiple SDXes been deployed [1, 3], but also the two
largest Internet eXchange Points (IXPs) have begun prelim-
inary trials of the SDX [2, 15]. SDXes bring flexibility to
an aging Internet routing system by enabling members to
flexibly override their default BGP route using fine-grained
SDX policies. These policies enable new traffic-management
capabilities such as improved inbound traffic engineering or
application-specific peering.

Problem: Unfortunately, by silently overriding the default
BGP paths, SDXes lead to a phenomenon known as deflec-
tions. Intuitively, a deflection arises whenever the actual
forwarding path for a destination does not match the path
computed by the control plane (here, BGP): the two planes
are not congruent anymore. Because one of the roles of BGP
is to guarantee the eventual correctness of the forwarding
plane, bypassing it can result in forwarding anomalies, includ-
ing forwarding loops.

Figure 1 illustrates a simple situation where SDX policies
introduced at two SDXes (SDX1 and SDX2) lead to forward-
ing loops. SDX1 interconnects B, C, and G, while SDX2 inter-
connects E, D, and F . A advertises n IP prefixes (p1, ..., pn).
The preferences are such that D prefers the paths from C while
G prefers the paths from F . As dictated by BGP, whenever
an AS receives multiple equally preferred paths for the same
destination, it breaks the tie by preferring shorter AS paths.
Two SDX policies are defined: (i) F deflects all traffic des-
tined to prefix p1 to D, while C deflects all HTTPS-traffic by
defining a policy matching on the destination port. The end
result is a persistent forwarding loop for all packets entering
C, D, F or G with a destination IP in p1 and TCP port 443.



Passively or actively detecting such SDX-induced loops
is challenging (and often impossible) for two reasons: First,
the loops are not visible to the BGP control plane, making it
impossible to detect these loops by monitoring BGP routes.
In this example, D believes that HTTPS traffic directed to
p1 will go via [C,B,A] (according to the AS path) while it
ends up traversing [C,G,F ]. Second, any subset of the flow
space—for any of the 600,000s+ Internet prefixes [4]— can
be caught in an SDX-induced loop, making active detection
(e.g., via probing) ineffective as well. In our example, only
the traffic for port 443 and prefix p1 loops, while the rest of
the traffic successfully reaches the destination.

This work: In this paper, we present SIDR (Safe Inter-domain
Deflection-based Routing), a new coordination framework
that enables SDXes to verify the end-to-end correctness of an
SDX policy. Given the difficulty of detecting SDX-induced
loops, SIDR adopts a proactive approach by having SDXes
exchange information about the deflections they introduce.
Doing so, SIDR restores the congruence between the SDN
data plane and the BGP control plane and lets each SDX
check for policy correctness locally.

Challenges: Although exchanging information can guaran-
tee the absence of loops, it also introduces three challenges
that are seemingly at odds: (i) privacy, revealing as little
information about the policies (flow space and actions) as
possible; (ii) scalability; while preserving (iii) flexibility, al-
lowing to activate as many safe policies as possible. The
first two call for exchanging as little information as possible.
Indeed, SDXes and their participants are not keen on sharing
detailed information about their policies. At the same time,
exchanging detailed and highly volatile information between
many entities would not scale. Yet, sharing little information
contradicts with the flexibility objective. Intuitively, with
fewer information, SIDR can check the correctness of fewer
policies forcing it to block safe SDX policies.

SIDR addresses the needs for privacy and scalability, while
preserving most of the SDXes’ flexibility. In terms of privacy,
SIDR only requires SDXes to exchange information about
where they deflect traffic to, not what is being deflected there.
As such, SDXes do not have to share information about the
most sensitive part of their policies: the match field. In terms
of scalability, SIDR minimizes the number of SDXes that have
to exchange information. By relying on eventual consistency
(like BGP), SIDR also enables SDXes to rapidly activate a
policy. In terms of flexibility, SIDR still enables 91% of the
safe policies to be activated. In contrast, only 2% of the safe
policies can be activated without SIDR.

Novelty: Previous work such as Veriflow [17] and HSA [16]
also aim to guarantee loop-free forwarding. Yet their detec-
tion and prevention techniques are geared at single domains
where the entire forwarding state is known. In contrast, SIDR
considers interdomain correctness with partial information.
Although the SDX setting motivated our work on SIDR, its
principles are general and can be applied to ensure the correct-

ness of other deflection frameworks such as Path Splicing [20]
or TED [24].

Main contributions: Our main contributions are:
• An introduction to the problem of SDX-induced for-

warding loops along with the difficulty of avoiding them
(§2).
• A new coordination framework, SIDR, which enables to

guarantee Internet correctness in the presence of SDX-
induced deflections (§3). SIDR reduces the amount of
information to be shared and the number of SDXes shar-
ing it, while preserving high-levels of flexibility.
• A complete implementation of SIDR atop the existing

SDX platform along with a comprehensive evaluation
showing that SIDR scales and preserves flexibility, being
able to activate 91% of all safe policies (§4).

2 Interdomain Deflections at SDXes
In this section, we highlight the conditions for SDX-induced
forwarding loops to occur (§2.1). As the problem lies in
the incongruity of the data and control plane, we introduce
a simple solution that requests the SDXes to share all their
state (§2.2). While this solution is correct, it is not realistic.
We explain in the next section how SIDR improves on the
strawman solution to make it practical.

2.1 SDX-induced Forwarding Loops
As not all SDX policies create a forwarding loop, we now
look at the reason for loops to exist to better understand the
problem. Specifically, two necessary and sufficient conditions
must be met:

1. There must be at least two SDX policies defined at two
or more SDXes, and the concatenation of the AS paths
of the routes used contains a loop;

2. The affected flow spaces of these SDX policies have a
nonempty intersection.

The two conditions are necessary. Indeed, a single SDX pol-
icy cannot create a loop since the AS path which the deflection
tries to use is loop-free thanks to BGP’s loop detection al-
gorithm. Moreover, even when considering multiple SDX
policies, if their flow spaces do not intersect, no traffic will
ever match all these policies at the same time.

The two conditions are also sufficient. Whenever we have
two or more SDX policies (deflections) that form a loop, and
the flow spaces of these SDX policies are intersecting, it
creates a persistent forwarding loop.

2.2 Strawman Solution
A simple solution resynchronizes the data and control planes.
Unfortunately, whether a given SDX policy creates a loop or
not depends not only on itself, but on all the other policies
already present at other SDXes. We now describe a strawman
approach in which all SDXes instantaneously share all their
information, including their SDX policies and the content of
their BGP routing table (RIB). This sharing is done using a
strongly consistent, distributed database.
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Figure 2: For every SDX policy activation request and every change
in the topology, SIDR checks whether a forwarding loop exists and
takes counter-measures if necessary.

Before installing a new policy (i.e., a new deflection), each
SDX analyzes the AS path of the route the policy tries to use
by looking for SDXes on the deflected path. For all SDXes
on the deflected path, it checks whether at least one of them
has a policy installed whose flow space intersects with that of
the new policy. If so, it analyzes the deflected AS path of that
policy and continues until: (i) the flow spaces do not intersect
anymore; (ii) the destination is reached; or (iii) a loop is
detected. One can think of this process as a DFS traversal. In
the first two cases, the SDX activates the policy and shares
this information with all the other SDXes. In the third case, it
will not activate the policy as it creates a forwarding loop.

2.3 Challenges
As we highlighted earlier, the challenge in designing an ef-
fective and practical system is to strike a balance between
(i) privacy, (ii) scalability, and (iii) flexibility. The strawman
solution described above prioritizes high flexibility, i.e. ensur-
ing as many SDX policies are activated as possible. However,
this high flexibility comes at the cost of poor scalability and
privacy—making it an impractical solution to deploy. We
will now describe the scalability and the privacy challenges
in greater detail :

Scalability: Two dimensions have to be addressed: (i) the
size of the state the system needs to maintain and exchange,
and (ii) the rate at which updates need to be processed. Syn-
chronizing the RIBs and activated policies amongst all SDXes
is non-trivial considering the size of the Internet. Similarly,
processing this information to detect forwarding loops is chal-
lenging as many prefixes can be affected at the same time and
the state is volatile. Fast processing is imperative to counter
forwarding loops in a timely matter.

Privacy: As SDX forwarding policies can be defined on arbi-
trary flow space, not just on the destination prefixes, SDXes
are required to share the full policy information with each
other to perfectly determine the safety of a policy. In prac-
tice, participants at these IXPs are reluctant to share their
fine-grained SDX policies.

3 SIDR
SIDR addresses the challenges we highlighted in the previous
section by exchanging only basic information about the poli-
cies, minimizing the number of SDXes required to exchange
information with and basing the loop detection on partial in-
formation. Below, we present in §3.1 an overview of SIDR,
a system that coordinates the activation of SDX policies us-
ing local instances at SDXes, and demonstrate its principles
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Figure 3: Overview of the events at SDX1 due to a successful policy
activation at SDX2 and a local policy activation request.

with an example. Then, we describe the three components
of SIDR: the communication manager (§3.2), the deflection
information base (§3.3) and the policy verifier (§3.4).

3.1 Overview
SIDR is a daemon running on top of every SDX consisting
of three major components: (i) the communication manager,
which manages the inter-SDX communication; (ii) the de-
flection information base (DIB), which provides a local view
of the policies activated locally and at remote SDXes; and
(iii) the policy verifier, which processes all policy activation
requests and constantly verifies the locally activated policies.

Figure 2 provides an overview of the system. SIDR takes lo-
cal policy activations, deflection notifications and changes in
the RIB as input, updates the DIB, and starts the policy verifi-
cation process to determine whether the resulting forwarding
state is loop-free. In case of a policy activation request, SIDR
grants (or denies) permission to activate the new SDX policy
and informs the other SDXes. If an already activated policy
suddenly causes a loop because of a RIB change or remote
policy activation, it must be removed.

After this broad overview, we give an intuition of how SIDR
operates using the example from §1 and Figure 3. We take
a closer look at the SIDR instance running at SDX1. SDX2
installed a policy from F to D for all traffic destined to p1.
(1) It sends a deflection notification to the next affected SDX,
SDX1. This notification contains the following information:
(i) the affected prefixes: here p1; (ii) the identifier of the
SDX sending the notification: SDX2; (iii) the deflection set:
{F,D}; and (iv) the ingress participant at the remote SDX:
C. It informs the SDX about all the ASes from which it
might receive deflected traffic. (2) SDX1 inserts the entry p1:
{F,D} into its DIB. (3) Later, SDX1 receives a request from
participant C to install a policy which deflects all HTTPS-
traffic to participant G. The policy verifier starts a loop check
and accepts the policy if no loop is created. If necessary, it
crafts notifications to inform its neighboring SDXes about the
new deflection. To verify the policy, SIDR first retrieves all
the routes G advertised. In this example, it finds a route for
p1 with the following AS path: [G,F,E,A]. It then queries
the DIB, retrieves the entry for p1—{F,D}—and combines it
with the route. It is apparent that the new SDX policy is not



safe as F appears in both the deflection set and the AS path.
(4) Therefore, the SDX policy is rejected.

Upon reception of a deflection notification or a change in
the RIB, SIDR runs the same verification process to check
whether any of the already activated SDX policies are now
creating a loop. If this is the case, SIDR deactivates this policy.
Otherwise, it simply updates the DIB and sends the resulting
notifications to its neighbors.

3.2 Communication Manager
Because a loop consists not only of local, but also remote
policies, SIDR instances must exchange information about
the activated policies amongst each other. The communica-
tion manager performs this task. Maintaining a session and
exchanging information constantly with hundreds of remote
SDXes around the globe does not scale. Fortunately, the
majority of the remote policies do not affect a local SDX.
Thus, it is not necessary to share each and every policy with
all the SDXes. It suffices to establish sessions only between
immediate neighbors. Here, we define neighbors of an SDX
as the ones that appear first on any of the advertised paths at
that SDX. To still have the information spread to all affected
SDXes, each SIDR instance aggregates the received informa-
tion and passes it on to its immediate neighbors. Information
for a given prefix has only to be passed on to the neighbors
on the best path and all paths for that prefix which are used
by an active policy.

Two mechanisms can be used to detect the immediate
neighbors of an SDX: (i) a specialized neighbor discovery
protocol, or (ii) a centralized SDX registry where each SDX
and all of its participants are listed. The communication man-
agers can then combine the information from the registry with
the information about locally advertised paths to infer their
immediate neighbors.

3.3 Deflection Information Base
To check whether a policy creates a loop, SIDR must know
about deflections that result from remote policies. The SDXes
exchange this information through the communication man-
ager, store it in the DIB and pre-process it for the policy
verifier.

Each SIDR instance maintains its own local view of all the
locally relevant policies in the Internet. These local views
facilitate faster processing of policy activation requests, be-
cause the system does not have to rely on remote SDXes.
This decision creates the risk of transient loops, since the
local DIB might be out-of-sync with the actual network state.
Fortunately, this behavior is temporary and as soon as the
local view is in-sync again, the forwarding loops are detected
and eliminated—ensuring eventual loop-freedom.

The DIB has three tables: (i) the input table: which stores
all the incoming deflection notifications; (ii) the local table:
which stores the information needed for the policy verifier.
For each SDX participant and prefix, the DIB contains the set
of ASes from which deflected traffic might be received. This
information is built by combining the entries of the input table.

For example, consider the case where we have two entries
in the input table for a prefix p and participant A: One from
SDX1 and one from SDX2. We combine these two entries
by building the union of their deflection sets before storing
it in the local table; and (iii) the output table: which stores
the notifications sent to neighbor SDXes. These notifications
do not only contain information about deflections caused by
local policies, but also about all relevant remote deflections.
Hence, they are crafted based on the locally activated policies
and the entries in the local table. Assume,the following entry
is in the local table: C: p1 - {F,D} and C has an active policy
for prefix p1 towards B: {B,C}. Then, we combine the two
sets, and the resulting deflection set is {B,C,F,D}.

3.4 Policy Verifier
The most important part of the system is the policy verifier. It
is in charge of performing the loop check whenever a local
participant wants to activate a new SDX policy, a deflection
message is received or the RIB changes.

To address both the scalability and privacy challenges, we
base the entire loop detection only on partial information:
For each policy, we consider only the affected prefixes and
the two ASes between which it is activated, and completely
disregard the exact flow space it is defined on. This choice
not only keeps the exact policies private, but also reduces
the information that needs to be exchanged. However, it
comes at the cost of false positives as not all loops can be
detected precisely and SIDR has to be conservative to not risk
correctness.

To determine whether a given policy, active for some pre-
fixes, creates a loop, the following information is needed: (i)
all the RIB entries (AS path) and (ii) all the entries from the
local table of the DIB (deflection set) for these prefixes. To
simplify the verification, we group all prefixes with the same
AS path and deflection set. Hence, for every prefix group,
the policy verifier compares the ASes on the AS path, to the
ASes in the deflection set. The ASes on the AS path are the
ones being potentially traversed due to the policy, while the
deflection set contains the ASes through which the traffic
might arrive. If an AS appears both in the AS path and the
deflection set, it is possible that a forwarding loop exists.

To speed up the policy verification process, SIDR precom-
putes a so called forbidden set which stores for each pair of
participants and prefix group whether a policy might create
a loop. This can be done offline as the exact flow space of
an SDX policy is not required for the loop check. Whenever
the DIB or the RIB changes, we run the loop verification
mechanism for all affected participant pairs and prefixes. At
the same time, the forbidden set is updated. Upon a policy
activation request, the policy verifier does not need to consult
the RIB and DIB, but can simply check the forbidden set.

Because policy activation relies on the DIB, policies might
be activated concurrently at multiple SDXes such that their
combination creates a forwarding loop. The SDXes will
discover this loop after all the deflection notifications have
spread, which can in turn cause an oscillation as the SDXes



repeatedly deactivate and activate the conflicting policies. To
avoid such oscillations, we add a timestamp and a random
number to the notifications. In such a case, the SDX with
the youngest deflection and, in case of equal timestamps,
the highest number has to backoff and deactivate it. If the
random numbers are equal, all SDXes remove the policy. This
tiebreaker guarantees that the framework always converges
to a stable state as only a single SDX needs to deactivate its
policy to break the loop.

4 Evaluation
We now demonstrate the flexibility and the processing rate
of SIDR. The evaluation has two parts: (i) large-scale simula-
tions evaluating how many safe policies SIDR activates (§4.1)
and (ii) a set of microbenchmarks evaluating SIDR’s raw per-
formance in terms of: policy activation requests, deflection
notifications and RIB updates (§4.2).

Our results show that SIDR can safely activate more than
90% of the policies and that correctness checks can be han-
dled in no more than a few seconds.

4.1 SIDR Privacy and Flexibility
We evaluate how much the amount of information revealed
(privacy) influences the number of safe policies activated
(flexibility). Specifically, we simulate SIDR and three other
schemes with different levels of information exchange on the
AS graph from CAIDA from 2015-10-01 [5].

It is well-known that inferred AS-level topologies miss the
majority of IXP links [7]. Therefore, we augment the graph
with IXP links using the combined IXP dataset [18]. Our
augmented AS-level topology has a total of 52,040 nodes (of
which 421 are IXPs) and 1,251,811 edges (of which 1,053,654
edges result from the augmentation). Using this graph, we
then compute the paths from every AS to a randomly selected
group of 1,000 ASes according to the routing tree algorithm
from [11]. We consider each of the 421 IXPs to be an SDX.
Moreover, we consider that a given SDX is crossed by some
traffic for a destination whenever two consecutive ASes in the
AS path for the destination are members of that SDX.

At each SDX, we generate between one and four policies
per participant towards 20% (at most 50) of the other partici-
pants. We select the flow space for each policy according to a
port distribution observed in real traffic traces [6]. Hence, the
well-known ports (e.g., TCP 80 or UDP 53) are preferably
chosen. The activation requests arrive one after the other.

We evaluate the proportion of safe policies that can be acti-
vated considering four information exchange schemes: (i) ∅:
in which the only available information is the local RIB and
whether a specific AS path crosses an SDX. Hence, when-
ever a policy aims to deflect on a path that crosses another
SDX, we consider it to be unsafe and reject it; (ii) no pre-
fixes: a SIDR-like system which does not exchange the actual
prefixes for which the policy is active, but the participants
involved; (iii) SIDR; and (iv) strawman: in which all SDXes
have full knowledge of all SDX policies. We use the results of
strawman as benchmark as it activates all safe policies (§2.2).
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Figure 4: Flexibility of SIDR compared to different levels of ex-
changed information.

Figure 4 depicts the fraction of safe policies that end up
being activated under the different schemes. SIDR manages
to activate the vast majority (91%) of the safe policies, and
this, without revealing any information on the flow space. In
contrast, ∅ and no prefixes only end up activating 2% and 5%
of the safe policies, respectively. The poor performance of
∅ results from the fact that IXPs often appear on paths [21]
forcing the vast majority of the policies to be rejected. Finally,
the poor performance of no prefixes—in which SDXes do
exchange deflection information—is a result of the SDXes
not being able to consider the per-destination routing trees but
instead the AS graph itself (being prefix agnostic) to detect
loops. Given how richly connected our topology is, these
loops happen frequently and end up preventing the SDXes to
activate most of the policies.

4.2 SIDR Scalability
We now evaluate the performance of our SIDR implementa-
tion using microbenchmarks for the three main events which
cause SIDR to trigger a loop check.

We implemented SIDR as a module on top of SDX-
Ryu [22]. It acts as a transparent layer between the par-
ticipants requesting a policy activation and the SDX-Ryu. If
the policy is safe, it is passed on to the SDX. Otherwise, the
policy is rejected. The module also: (i) handles the communi-
cation with other SIDR modules located in other SDXes; (ii)
maintains the DIB; and (iii) hooks into the RIB of the SDX.

In the following experiments, we instantiate SIDR without
the underlying fabric as we are only interested in measuring
the raw performance of SIDR, not the actual forwarding be-
havior. We run all our experiments 100 times on a server with
4 physical cores at 2.4 GHz and 36GB of RAM.

Policy activation: We measure how long SIDR takes from
the reception of a policy activation request to the decision to
accept or reject it. For this, we set up two participants (ingress
and egress). The egress participant advertises between 1,000
and 10,000 prefix groups. For each prefix group, we have
with probability 0.5 a corresponding entry in the DIB.

We then consider that the ingress participant provides a
single SDX policy directed to the egress participant. SIDR
therefore needs to check for every prefix group whether a
loop is created. Figure 5a shows that this processing time is
linear in the number of prefix groups. Even when considering
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Figure 5: Benchmarks of the three main events: Policy activation request, deflection notification and RIB update.

10,000 prefix groups, SIDR only takes 1.4 seconds to check
the policy. Note that the number of prefix groups is signifi-
cantly smaller than the number of prefixes advertised from
the egress participant.

Deflection notification: We then measure the time it takes
for our SIDR prototype to process a deflection notification
coming from another SDX. Recall that a deflection notifica-
tion triggers SIDR to update the DIB. Therefore, the more
policies the participant—through which a notification was
received—has, the more complex the processing of such a
notification becomes. For this experiment, we consider that
a single participant has active policies towards 50 to 500
participants which all announce the same prefix group.

Figure 5b shows that the processing time for a deflection
notification is linear in the number of policies a participant
has for the same prefix group. Even with active policies to
500 participants advertising the same prefix group, SIDR only
takes 140 ms to process the notification. We note that a recent
study showed that at most 25 participants announce the same
prefix group [15] for which SIDR needs less than 20 ms.

RIB change: Finally, we measure the time it takes for SIDR
to check the loop-freedom of all the policies affected by a
RIB update. Intuitively, the more policies are affected by a
route change, the longer it takes. In this experiment, we have
a single participant advertising one prefix group to 50 to 500
participants which all have one policy installed. Through each
of these participants one deflection notification was received.
We then update or withdraw the prefix group and measure the
time SIDR needs to process the RIB update.

Figure 5c shows that the processing time is linear in the
number of participants that have a policy installed towards
the participant sending the route update. Again, even when
considering large SDXes with 500 participants who all happen
to have a policy affected by the route change, it only takes our
SIDR prototype 60 ms to perform the loop freedom check.

5 Related Work

SDX platforms: Multiple SDX initiatives exist [1, 3, 14].
While the scalability [13] and security [12] have been stud-

ied, none of the approaches have looked at ensuring that the
resulting forwarding state is correct.

BGP Deflections: The fact that the BGP AS path and the
actual forwarding path do not necessarily conform (i.e., a
deflection exists) has been shown in the past [19]. Yet, with
SDXes deployed, we expect the number of deflections to
significantly increase motivating the need for SIDR. Many
works have proposed to introduce deflections: Some use
special headers to synchronize the data and control plane [9,
20]. Others [8, 23] craft special AS paths to enable the BGP
loop detection to detect the loops. [24] relies on the fact that
if all ASes follow Gao-Rexford [10], no loops can exist.

Loop Detection: [16, 17] prevent forwarding anomalies
within networks and require full information. SIDR addresses
interdomain forwarding with partial-information.

6 Conclusion
In this paper, we showed that different SDXes installing poli-
cies without coordination can lead to persistent, and particu-
larly hard to debug, forwarding loops in the Internet. We in-
troduced SIDR, a coordination framework that enables SDXes
to verify the correctness of a policy. SIDR strikes a balance
between the need for privacy and scalability while preserv-
ing much of the flexibility offered by SDX platforms. The
key insights behind SIDR are to: (i) exchange information
about where traffic is diverted not what is diverted; and (ii)
minimizing the amount of SDXes requiring to exchange state.

We implemented SIDR and showed its practical effective-
ness. In future work, we want to consider how SIDR can
detect and handle misbehaving SDXes. We also want to bet-
ter study the fairness aspects, making sure that each SDX has
the same chance of activating a policy.
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