
Computing with BGP:
from Routing Configurations to Turing Machines

Marco Chiesa? Luca Cittadini? Giuseppe Di Battista? Laurent Vanbever† Stefano Vissicchio†
? Dept. of Computer Science and Automation, Roma Tre University † Université Catholique de Louvain
?{chiesa,ratm,gdb}@dia.uniroma3.it †{firstname.lastname}@uclouvain.be

Abstract—Because of its practical relevance, the Border Gate-
way Protocol (BGP) has been the target of a huge research and
industrial effort since more than a decade and a BGP routing
theory has been developed out of that effort.

In this paper, we show that there exists a mapping between
BGP and a logic circuit. We show simple networks with routers
with elementary BGP configurations that simulate logic gates,
clocks and flip-flops, and we show how to interconnect them
to simulate arbitrary logic circuits. We then investigate the
implications of such a mapping on the computational complexity
of BGP problems. We show that, under reasonable assumptions
on message timings, BGP has the same computing power as a
Turing Machine. As a consequence, we devise a new method for
studying the complexity of analyzing BGP configurations and
exploit such a method to give several new complexity bounds.
Also, if message timings are unrestricted, BGP can simulate a
combinational logic circuit, which allows us to prove the NP-
hardness of a new variant of a well-known BGP problem.

Finally, we investigate whether the mapping is still feasible
when BGP policies are restricted, e.g., in iBGP or when Local
Transit Policies or Gao-Rexford conditions are enforced.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [1] is the de-facto
standard protocol that regulates inter-domain routing. Each
Autonomous System (AS) willing to join the Internet has
to configure both eBGP and iBGP on its routers. Routing
information about Internet destinations is exchanged via eBGP,
while iBGP distributes this information inside the same AS.

BGP has been designed to allow each AS to specify its own
routing policies in complete autonomy, in such a way that
the AS can fully control routes that it accepts, prefers, and
propagates. Such a rich policy expressiveness has been shown
to be the root cause of routing and forwarding anomalies that
can occur in both eBGP [2] and iBGP [3].

Because of its practical relevance for Internet operationand
its lack of correctness guarantees, BGP issues have been the
focus of a huge research and industrial effort in the last
15 years. Results of such an effort encompass experimental
measurements of disruptions due to BGP (e.g., [4], [5]),
formal analyses of the protocol (e.g., [2], [3]), proposal of
configuration guidelines (e.g., [6]) and of protocol modifica-
tions (e.g., [7]), and practical approaches to check a given
configuration for correctness (e.g., [8], [9]).

In this paper, we unveil a mapping between eBGP config-
urations and elementary logic gates. By fully developing this
intuition, we show that eBGP is also powerful enough to simu-

late memory and clock components, and encode arbitrary logic
circuits. We build the mapping assuming a simplified model
for BGP routing policies which does not capture advanced
BGP features like MED or conditional advertisement.

We investigate the theoretical consequences of the mapping
on the computational complexity of several BGP problems,
using two different models for BGP dynamics.

First, we consider a model where some constraints are
imposed on BGP message timings. In particular, we assume
that each link has a minimum and a maximum delay. We
show that eBGP configurations can simulate arbitrary Turing
Machines in this model. Two implications derive from this.
On one hand, we have that policy-based protocols like BGP
intrinsically have the same computational power of Turing
Machines, even when simple policies are considered. On the
other hand, BGP routing problems, like convergence and
route propagation, can be shown to be PSPACE-hard in the
considered model. This implies that such problems cannot be
solved by a SAT-solver [10].

Second, we consider a purely asynchronous model in which
BGP messages can be arbitrarily (even if not indefinitely) de-
layed. Hence, we revisit previous work by devising a proving
method based on the mapping between BGP configurations
and combinational logic circuit. We show how to apply this
method to both known BGP problems and their variants.

Finally, we investigate the impact of policy restrictions on
the complexity of BGP problems. We analyze both iBGP net-
works and eBGP policy configuration paradigms like the well-
known Gao-Rexford conditions [6] and the widely used Local
Transit Policies [11]. Unfortunately, we find that problems
remain hard in all those settings. Some robustness problems
remain hard even when convergence to a single stable state is
guaranteed. Our findings extend the results claimed in [12],
and define the border with open problems more precisely.

The rest of the paper is organized as follows. Section II
defines the mapping between BGP configurations and logic
circuits. Section III shows the implications of the mapping
on the complexity of BGP problems in different models.
Section IV uses the mapping to analyze the impact of policy
restrictions to our complexity results. Section V discusses the
related work, and Section VI concludes the paper.

2

II. BGP CONFIGURATIONS AS LOGIC CIRCUITS

BGP’s most prominent feature is the support for rout-
ing policies that each BGP router can autonomously define.
Routing policies are used to specify which routes should be
accepted from (or announced to) which neighbors, and to
assign different degrees of preference to different routes.

In this paper we rely on the well-known SPP formalism [2]
to model eBGP configurations (in Section IV-A we use a
similar model to represent iBGP configurations). In SPP, an
eBGP configuration is represented as a graph where every
node is an Autonomous System (AS) and every edge is an
eBGP peering. Since BGP routers treats different destinations
separately, we focus on one destination at the time. The
destination is represented by a special node d, to which all
other nodes try to establish a route. A route is a simple path
on the graph. Each node can specify its own policy, which is
modeled as the totally ordered set of all the routes that the
node accepts towards the destination. SPP encodes the BGP
decision process directly in the configuration of the policies in
such a way that nodes can use an extremely simple algorithm
to select their best route [2].

Despite the fact that SPP is a simplified model for BGP
policies (it does not capture MEDs and conditional route
announcements, just to name a few), in this section we
show that SPP instances representing eBGP configurations can
emulate any logic circuit. First, we show eBGP configurations
that implement elementary logic gates. Second, we describe
eBGP configurations for more advanced circuital components,
namely flip-flops and clocks. Finally, we describe how to
arbitrarily connect circuital components.

A. Elementary Logic Gates with eBGP

We now show how to build an eBGP configuration that
simulates the OR and NOT logic gates. We map the inputs
(outputs, resp.) of a logic gate to a set of input nodes (output
nodes, resp.) of the SPP instance. Also, we map the availability
of a route to a 1 and the absence of a route to a 0. In particular,
the availability (absence, resp.) of a route at an output node r
at time t means that the logic gate’s output signal at t is 1 (0,
resp.).

The eBGP configurations simulating the OR and the NOT
logic gates are shown in Fig. 1. The graphical convention
we use in the figure is adopted throughout the paper, unless
differently specified. ASes are represented by circles, and solid
edges represent eBGP peerings. A list of paths is specified
beside each AS. Each list contains the paths that the AS
accepts (i.e., paths that are not filtered out by the routing
policy) in a descending order of preference. All routes refer to
the same destination d. We use dots inside a path when we do
not specify the entire path, so (a b . . . d) represents a path that
start at a, traverses b and ends at d. Incoming and outgoing
dashed arrows indicate input and output nodes, respectively.
For the sake of brevity, whenever it is clear from the context,
we omit node d and its peerings. For example, in Fig. 1(b),
d should be considered directly attached to b. Note that b is

i1 i2

r

o1

(r i1 . . . d)
(r i2 . . . d)

(o1 r i1 . . . d)

(i1 . . . d) (i2 . . . d)

(o1 r i2 . . . d)

(a) The OR gate.

i1 b

r

o1

(r i1 . . . d)
(r b d)

(o1 r b d)

(i1 . . . d) (b d)

(b) The NOT gate.

Fig. 1. eBGP networks simulating basic logic gates.

a b

(a s . . . d)
(a d)

(b r . . . d)
(b d)

s r

(a b d) (b a d)
o

(o a b d)

(s . . . d) (r . . . d)

(a) A DISAGREE with two extra
nodes S and R behaves as a flip-
flop.

b

c a

(c b d)
(c d)

(b a d)
(b d)

(a c d)
(a d)

o
(o b d)

(b) A BAD-GADGET plus
output node o behaves as a
clock.

Fig. 2. eBGP networks simulating memory and clock.

guaranteed to have a route to d, since d announces its presence
to every neighbor and b accepts path (b d).

Fig. 1(a) represents an eBGP configuration corresponding
to the OR gate. Since node o1 only accepts routes from r, o1
will have a route to d if and only if at least one between i1 and
i2 has a route to d. Similarly, Fig. 1(b) represents an eBGP
configuration simulating the NOT gate. In this configuration,
o1 has a route to d if and only if i1 has no route to d. Indeed,
if i1 has a route to d, r receives and selects the route from
i1 because of its preferences. Thus, o1 will end up with no
route, since o1 does not accept path (o1 r i1 . . . d), as shown
by the absence of the path in the list aside o1 in Fig. 1(b)).
On the contrary, if i1 has no route to d, then r selects (r b d)
and, consequently, o1 selects (o1 r b d).

B. Memory and Clock with Popular eBGP Gadgets

Besides encoding elementary gates, eBGP is powerful
enough to simulate more complex logic components, like flip-
flops and clock generators.

Fig. 2(a) shows an eBGP configuration that simulates an
SR flip-flop. This flip-flop has two inputs S (set bit) and R
(reset bit) and one output Q. The flip-flop stores and outputs
a 1 (0, resp.) whenever the set (resp., reset) bit is set to 1 (0,
resp.). If both set and reset bits are set to 0, then output Q is
the stored value. Setting both S and R to 1 is not allowed.

The configuration in Fig. 2(a) simulates this behavior. It is
based on the presence of a well-known BGP gadget, called
DISAGREE [2], that has two stable states. Indeed, nodes a and

3

b form a DISAGREE. In one stable state, nodes a and b select
paths (a b d) and (b d), respectively. In the other one, nodes
a and b select (a d) and (b a d), respectively. Depending on
whether nodes s and r receive a route, we have the following
three cases. If s announces a route to a, then a never selects
(a d), since path (a s . . . d) is available and more preferred
than (a d). Hence, b has to select (b d) and a can select its
best path (a b d). Symmetrically, if r announces a route to b,
then a has to select (a d). Finally, if neither s nor r receives a
route, then the DISAGREE does not change its stable state. As
a consequence, node o has an available path to d if and only
if node a selects path (a b d), hence mirroring the output of
an SR flip-flop.

Further, the dynamics of eBGP configuration that admits
no stable state are conceptually similar to those of clock
generators. A clock generator is a logic circuit producing a
signal that oscillates between 1 and 0. The BAD-GADGET [2],
shown in Fig. 2(b), is a gadget that never converges to a stable
state. It consists in a cycle of three nodes a, b, and c, in
which each node prefers a route through its successor instead
of a direct route to d. When the gadget oscillates, node a
alternatively selects paths (a c d) and (a d). Since o does not
accept path (a c d) from a, o has a route only when node
a selects (a d). Therefore, the output node o will alternate
between having a route and not having any route, as for a
clock generator. Observe that the clock of Fig. 2(b) can be
thought in terms of the circular interconnection of 3 NOT
gates of Fig. 1(b).

C. Simulating Arbitrary Logic Circuits

Now that we have the elementary logic components, it
would be tempting to simply interconnect them using eBGP
peerings. Such an operation is needed for building: (i) the
AND gate, using OR and NOT and applying the De Morgan’s
laws; (ii) arbitrary logic gates as a combination of AND,
OR, and NOT; and (iii) arbitrary logic circuits starting from
logic gates, flip-flops and clocks. Unfortunately, arbitrary
interconnections are not straightforward, especially because of
BGP peculiarities.

The first problem we face is that signal propagation in
logic circuits has a direction, while routes may traverse an
eBGP peering in both ways. We need to prevent routes
from being propagated in unintended directions, e.g., “signals”
traversing the gates from their output to their input. This can
be accomplished by using eBGP policies to accept only routes
in the intended direction.

A second and more subtle problem arises with loops. BGP
has a built-in control plane loop prevention mechanism [1]
which mandates ASes to discard routes containing their own
identifier. Because of this mechanism, we need an additional
building block to be able to simulate logic circuits where the
signal is propagated through a loop. In particular, we interpose
a special gadget, called HUB gadget, between any pair of
interconnected logic components

The HUB gadget is represented in Fig. 3. Intuitively, it takes
a route at its input node i and generates a new, completely

i

P1, . . . , Pn

(i)P1

(i b1 d)

b1
(b1 d)

h

(h i b1 d)
(h b2 d)

b2
(b2 d)

o

(o h b2 d)
from p

(i)Pn

. . .routes

Fig. 3. The HUB gadget we use to interconnect logic components.

different route at its output node o. It can be seen as the
concatenation of two NOT gadgets, in which the first NOT
gadget filters out the original route and the second NOT gadget
generates the new one. No route is produced in output if i
receives no external route. In other words, the HUB gadget
is able to correctly propagate both the presence of a route (a
binary 1) and the absence thereof (a binary 0).

Nodes h, b1 and b2 are different for each HUB gadget
and therefore cannot appear in any external route received
by i. This guarantees that the output route cannot share any
node (besides d) with the input route, which in turn keeps
BGP’s loop prevention mechanism from being triggered. More
precisely, if i receives no route from its neighboring node p, i
selects route (i b1 d). This allows h to select its preferred path
(h i b1 d), which in turn makes o unable to select any valid
route to d. Otherwise, if p advertises a route (p . . . d) to i, then
i selects (i p . . . d). As a consequence, h selects (h b2 d), and
o selects (o h b2 d).

Observe that the output node of the HUB gadget can either
announce no route, or it can announce a single route which
does not depend on the route received by the input node.
For this reason, when connecting the output node o of the
HUB gadget to the input node i′ of another gadget, i′ can
receive only one route. Moreover, the same property holds
for DISAGREE, BAD-GADGET and NOT gadgets. The OR
gadget is a little bit different in that it can output two distinct
routes. Since we place a HUB gadget to interconnect any two
logic components, the maximum number of paths accepted by
the input node of any of the logic components introduced in
Sections II-A and II-B is two. Hence, the configuration that
encodes a logic circuit can be built in polynomial time in the
size of the circuit.

Since a combinational logic circuit can encode any logic
formula, the fact that eBGP can be used to construct combi-
national logic circuits intuitively explains why most problems
related to BGP are NP-hard. In fact, by encoding a logic
formula in BGP, it is typically possible to obtain a polynomial
reduction from SAT [13], a well-known NP-complete problem.

III. UNDERSTANDING THE COMPLEXITY OF BGP USING
LOGIC GATES

The fact that eBGP configurations can simulate logic cir-
cuits has several implications in terms of the computational
complexity of routing problems. Such results depend on how
BGP dynamics are modeled. In this section, we separately con-
sider two different models: (i) min-max asynchronous model,

4

where messages traversing a link have a propagation delay
between a minimum and a maximum value; and (ii) purely
asynchronous model, where messages can be arbitrarily (even
if not indefinitely) delayed. The former is meant to describe
the propagation and computing delays in real networks, while
the latter is meant to capture every possible message timing,
which is useful from the perspective of a protocol designer.

A. Building a Turing Machine with Logic Gates

In the min-max BGP model, each link l is associated with
a propagation delay that can take any value within range
(ml,Ml), where ml (Ml, resp.) is the minimum (maximum,
resp.) delay value for l. Both ml and Ml are finite values.
Observe that, if ml = Ml all BGP message exchanges are
completely synchronized. In general, however, we assume
ml 6= Ml.

We now prove that in the min-max model a BGP network
can simulate a Finite Turing Machine (FTM) [14], which is
a Turing Machine where the size of the tape is finite. This
enables us to show that BGP routing problems are at least as
difficult as problems solved by an FTM (i.e., PSPACE-hard).
The proof consists of two steps. In the first step we show that
it is possible to construct an FTM starting from logic gates
and a clock, and interconnecting them with links having a
bounded delay. In the second step we use the building blocks
in Section II-A to translate the logic circuit that simulates the
FTM in an eBGP configuration.

Technically, an FTM is a device that processes symbols
on a finite-length tape according to a history-less transition
function δ. An FTM maintains a state during the computation
and uses a head to read and write on specific cells of the tape.
At the beginning, the tape is initialized with an initial string
of symbols and the FTM is in an initial state. At each step, the
FTM reads the symbol stored in the cell pointed by the head of
the tape. Next, according to its state and the read symbol, the
transition function δ computes a new symbol to be written on
the tape, a new state for the FTM, and eventually a movement
of the head of the tape. The computation halts when the FTM
reaches some special states.

Now, we build an FTM using only logic gates and a clock
(see Fig. 4) and connecting the circuital components with links
having a minimum and maximum delay. Each building block
in the figure represents a logic circuit, hence it can be encoded
with an eBGP configuration (see Section II). Details of the
circuits represented in Fig. 4 are provided in Appendix B.

The main issue is the synchronization. Indeed, on one hand,
an FTM performs the computation in a centralized way, where
all the operations are synchronized by the FTM itself. On the
other hand, in a logic circuit the computation is distributed
among the different logic gates and only partially synchro-
nized since the signal propagation delay is variable. In a
perfectly synchronized model where signal propagation delay
is deterministic, it is easy to keep the circuit synchronized by
conveniently assigning specific delays to the links. However, in
the more general min-max model, the synchronization requires
more attention since we need to be sure that the variability of

function δ

logic circuit to update the position of the tape head

D flip-flops recording the position of the tape head

logic circuit to update the tape

D flip-flops that realize the tape

logic circuit to read the tape

clock

δ-flip-flops

D flip-flops to store the state of the FTM

Fig. 4. A Turing Machine. Delays with values (2
3
T, 2

3
T +ε) and (ε, 2ε) are

associated with thick and thin lines, respectively, where T is the maximum
time the clock holds the same output value.

link delays does not add up across multiple iterations. We build
the logic circuit that simulates an FTM as follows. Function
δ is simulated by a combinational logic circuit obtained by
conveniently interconnecting simple logic gates. We call such
a combinational circuit “δ block”. A set of D flip-flops, called
the δ-flip-flops, are interconnected to the output of the δ block
in order to store its output value. The tape, the position of the
head of the tape, and the state of the FTM, are simulated using
D flip-flops. We build a logic circuit that updates the position
of the head and we connect it to the clock (which acts as an
enabler), to the δ-flip-flops that store the new position of the
head (which is the input of the circuit), and to the D flip-
flops that store the current position of the head (which is the
output of the circuit). Similarly, we build a circuit that reads
the tape and another one that updates it. The link delays within
the clock are set in such a way that the clock’s output node
produces the same output value (either a 0 or a 1) for a time
that is at most T and at least T − ε, with ε << T .

We now show that even if the clock period is variable, we
can synchronize the circuit to simulate a FTM. Assume, for
the sake of simplicity, that the clock switches to 1 at time
0 and that at time 0 the δ-flip-flops store the new state, the
symbol that needs to be written on the tape, and the direction
in which to move the head.

Consider a single clock period, which consists of two clock
ticks (one for 1 and one for 0). The main intuition is to use the
clock value 0 as a disabler, in order to block the propagation
of signals until the clock switches to 1 again. During the first
tick, the clock outputs 1 so all the δ flip-flops are enabled and
signals can propagate. Within this tick, we need to

• propagate the new symbol to write on the tape to the
logic circuit that updates the tape;

• propagate the new tape head position to the logic circuit
that updates the position;

5

• propagate the new state to the D flip-flops that store the
state; and

• transfer the symbol which is currently on the tape to the
input of the δ-block.

Observe that we need to make sure that the new symbol is
written on the correct cell of the tape. In order to do so, we
introduce a propagation delay between the D flip-flops that
store the head position and the logic circuit that updates the
tape. This ensures that when the circuit updates the tape, it
will refer to the correct position, independent of whether the
new position has been already written to the D flip-flops that
store the head position.

On the other hand, we need to avoid the possibility that
two or more symbols are read and elaborated within a single
clock period. In particular, we want the δ-block to be disabled
when the newly read symbol arrives, because we want this new
symbol to be processed in the next clock period. This means
that the propagation delay from the logic circuit that reads the
tape to the δ-block must ensure that the symbol arrives when
the clock has already switched to 0.

Now, if we can find an assignment of link delays that
guarantees the above properties, then we can apply the same
arguments to the next clock period and so on, yielding the
ability to synchronize the signals to the clock periods and
hence completing the definition of FTM. We show an example
of such an assignment of link delays in Appendix D.

The computation of an FTM finishes when a final state is
reached. If and only if the FTM reaches a final state, the clock
is stopped by the δ-flip-flops, hence the eBGP configuration
stabilizes. Some final states are called acceptance states.

Finally, we note that, since an FTM has a tape length
which is polynomial in the size of the input string, the entire
construction of the logic circuit takes polynomial time. More
details about the initialization phase of the logic circuit can
be found in [15].

B. Complexity of Min-Max Asynchronous BGP

We now prove that the above logic circuit and the clock can
be constructed using an eBGP configuration. The discussion
of Section II-A shows that using eBGP we can construct
logic gates. Since we are using a BGP model with min-max
delays, then we can simply assign the desired delay to BGP
peerings. Also, a clock with the appropriate timing can be built
interconnecting, as in Section II-A, 3 NOT gates.

The ability to simulate FTMs with eBGP configurations
enables us to prove PSPACE-hardness results for BGP prob-
lems. We reduce those problems from the LINEAR SPACE
ACCEPTANCE problem, which is known to be PSPACE-
complete [16]. An instance of LINEAR SPACE ACCEPTANCE
consists of a FTM M and a finite string x, where the size of
the tape of M is polynomial with respect to the size of x. The
problem is to verify if M accepts x. We say that an FTM M
accepts a string x if M halts on an acceptance state given that
x is initially written on its tape.

In the following, we prove that both SAFETY [2] and
REACHABILITY [17] are PSPACE-hard. SAFETY is the prob-

lem of deciding whether the BGP network is guaranteed to
converge to a stable state.

Theorem 1: SAFETY is PSPACE-hard.
Proof: We reduce SAFETY from the LINEAR SPACE

ACCEPTANCE problem. A similar construction with respect to
that described above enables to build an eBGP configuration
that simulates an arbitrary FTM M in such a way that the
network converges to a stable state if and only if M reaches
an acceptance state. This polynomial-time reduction directly
yields the statement.

A very similar reduction from LINEAR SPACE ACCEP-
TANCE can be leveraged to show the complexity of the
REACHABILITY problem [17], that is, deciding whether a BGP
configuration admits a stable state in which a given node s
has a route to a given destination d. Namely, it is sufficient
to build an BGP configuration that simulates the FTM M as
shown in the proof of Theorem 1 and modify it such that node
s is guaranteed to have a route if and only if the BGP gadget
simulating the clock has stopped oscillating.

Theorem 2: REACHABILITY is PSPACE-hard.
The theoretical results above hold also in the case the

minimum and maximum delay have the same value (see
Appendix D for more details). In this case, there are some
interesting practical consequences on BGP simulators. A BGP
simulator can be seen as a program that walks through all
the possible states of the network. In SPP, a simulator counts
how many steps the simulation has performed using a counter.
The maximum value of such a counter is set to the number of
possible states of the simulated network. In SPP, such a counter
has size polynomial w.r.t. the size of the BGP network. When
the counter overflows, the simulator has passed through one
state at least twice, which means that the network oscillates.
Hence, a simulator can be used to solve SAFETY using only
a polynomial amount of space, which means that SAFETY
is in PSPACE. The fact that SAFETY and REACHABILITY
are PSPACE-hard therefore implies that no static analysis
algorithm can be (asymptotically) more efficient than running
a simulation.

Observe that, theoretically, an infinite BGP network would
be able to simulate a Turing Machine with infinite tape. In
a sense this means that, despite the simplifications listed in
Section II, unrestricted BGP policies have the same expressive
power as Turing Machines.

C. Complexity of Pure Asynchronous BGP

By assuming complete asynchronism, messages are allowed
to be delayed arbitrarily, even if not indefinitely. This means
that every message must be eventually delivered, but no
constraint is imposed on when the delivery occurs. Observe
that the pure asynchronous model is not a special case of the
min-max model, because the upper bound on each link cannot
be assigned to a finite value as messages can be arbitrarily
delayed.

Our results on the mapping between BGP and logic gates
allow to simply prove complexity results on BGP even in
this pure asynchronous setting. For instance, consider the

6

i1

in

BGP network N
realizing boolean formula F o s

(o . . . d1)

d1

dn

. . . (o . . . dn)
. . .

(s o . . . d1)

(s o . . . dn)
. . .

(i1 d1)

(in dn)

Fig. 5. Scheme of the reduction from SAT COMPLEMENT to MOAS
REACHABILITY.

following problem, called MOAS REACHABILITY. Assume
that a destination prefix is generated by multiple origin ASes in
the eBGP network, as it happens when IP anycast is deployed
in the Internet (e.g., for the DNS root name server). The
MOAS REACHABILITY problem consists in determining if the
destination prefix is reachable from a given source AS for any
nonempty subset of origin ASes announcing the prefix. Such a
problem aims at verifying that reachability of a given MOAS
(Multiple Origin AS) destination is guaranteed in presence of
failures or planned maintenance.

Leveraging the mapping between BGP networks and logic
gates, it is easy to show that MOAS REACHABILITY is
NP-hard. Note that we cannot prove that the problem is
PSPACE-hard since the model makes it impossible to simulate
a clock with a given period and enables us only to build
combinational logic circuits. The scheme of the reduction from
SAT COMPLEMENT [13] is represented in Fig. 5, where
nodes labeled as di, with i = 1, . . . , n, represent the origin
ASes announcing the destination prefix, and N , F , and s are
defined as follows.

Let F be the boolean formula in conjunctive normal form
that represents an instance of SAT. Let s be a vertex that is the
given source AS. We interpose between them a BGP network
N which simulates the logic circuit corresponding to F .

The reduction can be built in polynomial time with respect
to the size of F . Indeed, given that the number of clauses
in F is C, the number of origin ASes di is equal to C,
and each gate in N has a constant number of nodes, each
accepting at most 2 ∗ C paths, because of the presence of
HUB gadgets at each interconnection between gates. Now,
considering the combination of origin ASes from which the
prefix is announced corresponds to providing all possible
inputs to the network N . By construction of N , this translates
to considering all boolean assignments to variables in the
original boolean formula F . Hence, s receives a route for
each combination of origin ASes announcing the destination
prefix if and only if the boolean formula F is satisfied by any
boolean assignment. The following theorem follows from the
coNP-hardness of SAT COMPLEMENT.

Theorem 3: MOAS REACHABILITY is coNP-hard.
We stress that, by applying the same reduction technique, it

is also straightforward to build reductions for problems like
REACHABILITY, ASYMMETRY, SOLVABILITY, TRAPPED,
UNIQUE, and MULTIPLE [17]. Details are provided in Ap-
pendix A.

IV. THE IMPACT OF POLICY RESTRICTIONS

Intuitively, the fact that BGP configurations can encode
arbitrary logic circuits suggests that the complexity of BGP
related problems stem out of the intrinsic complexity of BGP
semantics, which ultimately maps to the expressiveness of
BGP policies. One might argue that it is not surprising that
completely unrestricted policies yield complex semantics. It is
therefore interesting to study whether restricting BGP policies
significantly simplifies the analysis of a BGP configuration.

In this section, we consider iBGP configurations, where
policies are dictated by the iBGP route propagation rules
and IGP distances, Local Transit policies, where policies
depend solely on the ingress and egress AS, and Gao-Rexford
conditions, where policies are tied to commercial relationships
among ASes.

A. Restricting to iBGP

As opposed to eBGP, in iBGP all routers belong to the same
AS. For this reason, routing policies are typically not applied
on iBGP messages [3]. However, the specification of iBGP
with route reflection imposes an implicit route ranking and an
implicit route filtering. The ranking component is restricted in
that it has to be consistent with the IGP graph. The filtering
component is restricted in that it has to be consistent with the
iBGP graph.

In particular, the BGP decision process has some tie break-
ing rules that only have local significance (e.g., IGP distance),
therefore routing preferences are implicitly imposed by the
BGP decision process itself. Further, when route reflection [18]
is used, the protocol requires certain routes to be filtered out
at each iBGP router. More precisely, the iBGP neighbors of
each router are split into three sets: clients, peers and route-
reflectors. Best routes are always relayed to clients, but best
routes learned from peers or route-reflectors are not propagated
to other peers and route-reflectors.

We now show that, despite the restrictions above, the pro-
tocol still retains enough expressive power to encode arbitrary
logic circuits.

First of all, observe that we can consider just egress points
preferences, disregarding the details of the IGP graph. In
fact, it can be shown that for any given set of egress point
preferences there exists an IGP graph which is consistent with
those preferences. The algorithm to build such an IGP graph
is described in Appendix E.

Fig. 6 depicts iBGP configurations that correspond to OR
and NOT gates. One-headed solid arrows represent sessions
from a client to its route reflector, while double-headed solid
arrows represent sessions between two peers. Inbound and
outbound dashed arrows indicate input and output nodes,
respectively. Paths aside each router represent the iBGP path
towards egress points. The rest of the notation is consistent
with the graphical convention introduced in Section II.

The iBGP configuration in Fig. 6(a) simulates the behavior
of an OR logic gate. The output router will receive a route to
any of the egress points ē1 and ē2 if and only if a route is
received by either i1 or i2 (or both). Similarly, Fig. 6(b) depicts

7

i1 i2

r

o1

(r i1. . .ē1)
(r i2. . .ē2)

(i1. . .ē1) (i2. . .ē2)

(o1 r. . .ē1)
(o1 r. . .ē2)

(a) The OR gate in iBGP.

i1

r1

r2

(i1. . .ē)
(i1. . .r1)

(r2 i1. . .ē)
(r2 r1) o

(r1)

(o r2 r1)

(b) The NOT gate in iBGP.

Fig. 6. iBGP configurations which simulate logic gates in iBGP.

i c

ex

x y

ey

(i . . . ēj)

routes to ēj
(. . . ēj)

(c ex)
(c . . . ēj)

(x y ey)
(x ex)
(x . . . ēj)

(y . . . ēj)
(y ey)
(y x ex)

o

(ex) (ey)

(o y ey)

Fig. 7. The IBGP-HUB gadget.

an iBGP configuration corresponding to the NOT gate. If i1
receives an eBGP route, it will propagate it to r2. Because of
egress point preferences, r2 will select the route announced
by i1. Now, since this route was learned from a peer, iBGP
route propagation rules require that r2 do not relay the route
to o, which therefore is unable to learn any feasible route. On
the contrary, if i1 receives no route, r2 will select the route
announced by r1 and will propagate it to o. Note that the iBGP
configuration corresponding to the NOT gate is based on the
OVER-RIDE gadget introduced in [19].

Reference [3] shows examples of iBGP configurations real-
izing DISAGREE and BAD-GADGET structures. This enables
us to build the memory and the clock components as we did
for eBGP in Section II.

Finally, to interconnect the logic components, we need the
equivalent of the HUB gadget for iBGP. Consider the IBGP-
HUB gadget depicted in Fig. 7. If i receives an iBGP path
R towards any egress point ēj , then i, c and x also select
route R. In this case, router y selects path (y ey) because of
its egress point preferences, and propagates it to o. Hence, o
receives, selects and propagates one route which has no router
in common with the original route R. Otherwise, if i receives
no path towards any ēj , then x selects route (x ex), enabling y
to select its most preferred route (y x ex). However, y cannot
propagate its best path to o because of iBGP propagation rules
that deny propagation of a path learned from an iBGP peer to
a route reflector.

Observe that the IBGP-HUB gadget outputs at most one
route, and has at most two routes in input. Also, node i
cannot receive paths from c, which implies that routes can
only flow from the left to the right part of the gadget only,

hence preventing propagation of routes in undesired directions.
In fact, either i) node i selects a path R = (i . . . ēj) which is
learned over the client session itself; or ii) node i has no path
to select as c’s best route (c ex) is learned from an iBGP peer
and cannot be propagated to another iBGP peer.

As a consequence, we can derive the computational in-
tractability results (NP-hardness for the asynchronous model
and PSPACE-hardness for the min-max model) of all correct-
ness problems defined in iBGP, namely signaling, dissemi-
nation and forwarding correctness [3], [19]. Having all the
needed building blocks, the iBGP configuration that simulates
a Finite Turing Machine can be done exactly as in Section III
for eBGP configurations. Regarding the NP-hardness proofs
in the asynchronous model, the reduction method described
in Section III can be re-used, with the only difference that
the set of possible boolean assignments to variables in the
SAT formula should be mapped into the set of egress points
receiving an eBGP route to the considered prefix.

B. Local Transit Policies and Gao-Rexford Conditions

We now consider eBGP policy restrictions that have been
proposed in the literature.

A common policy configuration practice consists in apply-
ing the so-called Local Transit policies [11]. Local Transit
policies consist in defining routing policies as functions of
the AS that announces the route and of the AS to which the
route is announced only. Observe that all the policies used to
build the gadgets presented in Section II are compliant with
the definition of Local Transit policies. The same holds for the
DISAGREE gadget and the BAD-GADGET. As a consequence,
BGP problems remain hard (in the asynchronous model) or
very hard (in the min-max model) even for BGP networks in
which only Local Transit policies are applied. These results
extend the findings in [12].

A further restriction with respect to Local Transit Policies
consists in imposing that the eBGP configuration satisfies the
Gao-Rexford conditions introduced in [6]. These conditions
are the most famous way to trade policy expressiveness for
correctness guarantees without the need for global coordina-
tion among ASes. Gao-Rexford conditions assume that each
AS classifies its eBGP neighbors as either customers, peers,
or providers, and that: i) routes learned from customers are
preferred over those learned from peers and providers; ii) there
is no cycle such that each AS in the cycle is a customer of
the next AS in the cycle; iii) an AS does not export routes
learned from a peer or provider to its peers or providers. It
has been proved [6] that the Gao-Rexford conditions guarantee
that BGP always converges to a unique stable state. Thus, a
greedy algorithm like the one proposed in [2] can be used
to compute the stable state, and to solve BGP problems in
polynomial time.

The BGP networks simulating the NOT and OR logic gates
(Fig. 1) are compliant with Gao-Rexford conditions if the
output node o1 is set as provider of r, and r is a provider
of all the other nodes. Similarly, the HUB gadget (Fig. 3) can
be forced to be compliant with the Gao-Rexford conditions if

8

i

P1,. . ., Pn

(i)P1

(i b1 d)

b1
(b1 d)

h

(h i b1 d)
(h b2 d)

b2
(b2 d)

o
(o h b2 d)from p

(i)Pn

. . .
routes

(a) A HUB violating Condition i).

i

P1,. . ., Pn

(i)P1

(i b1 d)

b1

(b1 d)

h

(h x i b1 d)
(h b2 d)

b2
(b2 d)

o
(o h b2 d)from p

(i)Pn

. . .
routes

x
(x i b1 d)

(b) A HUB violating Condition iii).

Fig. 8. Variants of the HUB gadget obtained by violating one of the Gao-
Rexford conditions. An oriented (unoriented) edge from a to b represents the
fact that a is a customer (peer) of b.

o is a provider of h, h is a provider of both i and b2, and i is
a provider of both p and b1. This assignment of commercial
relationships has the property that if a logic circuit does not
contain cycles (as in combinational circuits) then it can be
simulated by a BGP network that satisfies the Gao-Rexford
conditions. Otherwise, cycles in the logic circuits translates to
customer-provider cycles in the eBGP configuration, which
violates the second Gao-Rexford condition. The argument
above implies that the MOAS REACHABILITY problem intro-
duced in Section III remains NP-hard even when Gao-Rexford
conditions are enforced. This can be shown by simply re-using
the same proof as in Section III. It is interesting to note that
MOAS REACHABILITY is NP-hard under Gao-Rexford con-
ditions, because other BGP problems are polynomial in such a
setting. However, assuming Gao-Rexford conditions prevents
us from building arbitrary logic circuits and configurations
like a DISAGREE or a BAD-GADGET. This can be seen as
an intuitive explanation of why most BGP problems turn out
to be polynomial in such a setting.

However, violating any of the Gao-Rexford conditions en-
ables us to build configurations that simulates arbitrary logic
circuits, hence arbitrary Finite Turing Machines in the min-
max model. We have already shown a customer-provider
assignment such that a cycle in a logic circuit translates
to a customer-provider cycle in the BGP network. Hence,
if we violate condition ii) and customer-provider loops are
allowed, then every interconnection between logic components
is admitted. Otherwise, if conditions i) or iii) are violated,
we modify the HUB gadget as shown in Fig. 8. In each of
these two cases, cycles in the logic circuits are guaranteed not
to translate to customer-provider cycles, and only one of the
Gao-Rexford conditions is violated at the time. Hence, for any
violation of the Gao-Rexford conditions, arbitrary logic circuit
can be simulated with BGP configurations. As a consequence,
convergence and route propagation problems are still PSPACE-
hard if any of the Gao-Rexford condition is violated.

An interesting problem that remains open is whether policy
restrictions exist that do not guarantee convergence but allow
efficient analysis of BGP configurations.

V. RELATED WORK

Previous work has mostly focused on the asynchronous
BGP model in which messages can be arbitrarily (even if not
indefinitely) delayed. Several BGP routing problems have been

shown to be computationally intractable for both eBGP and
iBGP, in different models for expressing routing policies [17],
[2], [3].

Recent work focused on determining the computational
complexity of the fundamental SAFETY problem. We recall
that SAFETY consists in determining whether a BGP network
is guaranteed to converge. In [20] the problem is claimed to be
polynomial time solvable if “spurious” updates are admitted.
In [21] SAFETY is proved to be PSPACE-complete in an
unrealistic game-theoretical model in which BGP speakers
are assumed to be omniscient and BGP messages are not
passed router by router. In [12] the impact of models forcing
different kinds of policy restrictions on the computational
complexity of SAFETY and related problems has been studied.
Our work shows that SAFETY is PSPACE-hard in a model
in which bounded link delays are associated to each link.
Further, Section IV contains a study similar to [12] in which,
however, we consider different BGP problems and more policy
restrictions.

In [22] BGP is modeled as a specific game where each
router is a player and the router preferences are mapped to the
players’s strategies. The authors proved that for general play-
ers’s strategies, the problem of determining if the dynamics of
the game halts is PSPACE-complete in a pure asynchronous
setting. However, this results does not extend where players’s
strategies are more specific, as in BGP.

VI. CONCLUSIONS

Over the last 15 years, a routing theory has been developed
to study problems on BGP convergence and route propagation.
In this paper, we extend the current theory by describing a
mapping between BGP configurations and logic circuits. Also,
we show how to leverage the mapping to devise reduction
techniques and define the computational complexity of several
BGP routing problems in different models. Most notably, by
simulating Finite Turing Machines with BGP configurations,
we prove the PSPACE-hardness of famous BGP problems like
REACHABILITY and SAFETY in a model in which link delays
are bounded into ranges of values.

We finally investigate the impact of BGP policy restrictions
on the possibility to build our mapping. Whenever convergence
is not guaranteed, the protocol resulted to be still powerful
enough for BGP configurations to simulate arbitrary logic
circuits, implying that BGP problems remain computationally
intractable in the considered models.

In future work, we plan to investigate whether policy
restrictions exist that do not guarantee convergence but allow
efficient analysis of BGP configurations. We also plan to
extend our analysis to other models and routing protocols.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),”
RFC 4271, 2006.

[2] T. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. on Networking, 2002.

[3] T. Griffin and G. T. Wilfong, “On the correctness of ibgp configuration,”
in Proc. SIGCOMM, 2002.

9

[4] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP
misconfiguration,” in Proc. SIGCOMM, 2002.

[5] N. Kushman, S. Kandula, and D. Katabi, “Can you hear me now?! It
must be BGP,” in Computer Communication Review, 2007.

[6] L. Gao and J. Rexford, “Stable internet routing without global coordi-
nation,” in Proc. SIGMETRICS, 2000.

[7] A. Flavel and M. Roughan, “Stable and Flexible iBGP,” in Proc.
SIGCOMM, 2009.

[8] B. Quoitin and S. Uhlig, “Modeling the routing of an autonomous system
with c-bgp,” IEEE Network, vol. 19, no. 6, 2005.

[9] A. Flavel, J. McMahon, A. Shaikh, M. Roughan, and N. Bean, “BGP
Route Prediction within ISPs,” Comput. Commun., vol. 33, 2010.

[10] M. R. Prasad, A. Biere, and A. Gupta, “A survey of recent advances in
sat-based formal verification,” STTT, vol. 7, no. 2, pp. 156–173, 2005.

[11] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,”
in Proc. SIGCOMM, 2009.

[12] M. Chiesa, L. Cittadini, G. Di Battista, and S. Vissicchio, “Local
Transit Policies and the Complexity of BGP Stability Testing,” in Proc.
INFOCOM, 2011.

[13] C. Papadimitriou, Computational complexity. Addison-Wesley, 1994.
[14] P. Linz, An Introduction to Formal Language and Automata. USA:

Jones and Bartlett Publishers, Inc., 2006.
[15] M. Chiesa, L. Cittadini, G. Di Battista, L. Vanbever, and S. Vissic-

chio, “Computing with BGP: from Routing Configurations to Turing
Machines,” Université Catholique de Louvain, Tech. Rep., 2012, http:
//dial.academielouvain.be/handle/boreal:113003?site name=UCL.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[17] T. G. Griffin and G. Wilfong, “An Analysis of BGP Convergence
Properties,” in Proc. SIGCOMM, 1999.

[18] T. Bates, E. Chen, and R. Chandra, “BGP Route Reflection: An
Alternative to Full Mesh Internal BGP (IBGP),” RFC 4456, 2006.

[19] S. Vissicchio, L. Cittadini, L. Vanbever, and O. Bonaventure, “iBGP
Deceptions: More Sessions, Fewer Routes,” in Proc. INFOCOM, 2012.

[20] M. Suchara, A. Fabrikant, and J. Rexford, “Bgp safety with spurious
updates,” in Proc. INFOCOM, 2011, pp. 2966–2974.

[21] A. Fabrikant and C. Papadimitriou, “The complexity of game dynamics:
Bgp oscillations, sink equilibria, and beyond,” in Proc. SODA, 2008.

[22] A. D. Jaggard, M. Schapira, and R. N. Wright, “Distributed computing
with rules of thumb,” in PODC, 2011, pp. 333–334.

APPENDIX

A. Reductions for the Asynchronous BGP Model

In the following, we show how to leverage the mapping
between eBGP configurations and logic gates to prove the
complexity of the problems studied in [17]. All the following
reductions can be built in polynomial time with respect to F ,
since the eBGP configuration corresponding to each gate has
a constant number of nodes, and each node accepts a number
of paths bounded to two (see Section II-C). Also note that a
DISAGREE can be obtained as a loop of two NOT gadgets. As
a consequence, the following complexity proofs remain valid
whenever the OR and the NOT logic gates can be simulated
and arbitrarily interconnected via the HUB gadget.

1) Reachability: The REACHABILITY problem consists in
deciding if a BGP network admits a stable state in which
a given AS s has a route to a given destination AS d. The
problem has been already shown in [17] to be NP-hard. We
now show a simpler NP-hardness proof of the problem based
on the mapping between BGP configurations and logic gates.

Theorem 4: REACHABILITY is NP-hard.
Proof: Let F be the boolean formula in conjunctive

normal form that represents an instance of SAT. We build the
instance of REACHABILITY as follows. Refer to Fig. 9. Let
s and d be the source and the destination ASes considered

d

x̄1x1

(x̄1x1d)
(x̄1d)

(x1x̄1d)

(x1d)
xnx̄n. . .

(x̄nxnd)
(x̄nd)

(xnx̄nd)
(xnd)

i1 in

BGP network N
realizing boolean formula F

o

s

(i1x1x̄1d) (inxnx̄nd)

(o . . . d)

(s o . . . d)

Fig. 9. Scheme of the reduction from SAT to REACHABILITY.

d

x̄1x1

(x̄1x1d)
(x̄1d)

(x1x̄1d)

(x1d)
xnx̄n. . .

(x̄nxnd)
(x̄nd)

(xnx̄nd)
(xnd)

i1 in

BGP network N
realizing boolean formula F

o

s

(i1x1x̄1d) (inxnx̄nd)

(o . . . d)

(s o . . . d)

(s d)

(d s)

Fig. 10. Scheme of the reduction from SAT to ASYMMETRY.

in REACHABILITY, respectively. We interpose between them
a BGP network N which simulates the logic circuit corre-
sponding to F . We also add a DISAGREE gadget between each
input router ij in N and the destination d. Since each of the
n DISAGREE gadgets can independently converge to one of
two distinct stable states, we have 2n possible combinations of
stable states, each of which is mapped to a boolean assignment
of the variables. For each possible stable state, by construction
of the BGP network N , node o will have a route to d if and
only if formula F is satisfied by the assignment corresponding
to the stable state. The same argument applies to node s, which
completes the proof.

2) Asymmetry: The ASYMMETRY problem is defined as
follows: given a BGP configuration and two ASes s and d,
does there exist a stable state in which the path from s to d
is not the reverse of the path from d to s? Fig. 10 depicts
the scheme of the reduction from SAT. As in the reduction to
REACHABILITY, a series of DISAGREEs is interposed between

10

x̄1x1

(x̄1x1d)
(x̄1d)

(x1x̄1d)

(x1d)
xnx̄n. . .

(x̄nxnd)
(x̄nd)

(xnx̄nd)
(xnd)

i1 in

BGP network N
realizing boolean formula F

o

p2

(i1x1x̄1d) (inxnx̄nd)

(o . . . d)

(p2o . . . d)
(p2p1d)

p1

(p1p3d)

(p1d)

p3

(p3p2d)

(p3d)
(p2d)

d

Fig. 11. Scheme of the reduction from SAT to SOLVABILITY.

node d and a BGP configuration realizing the input formula F .
Path selection at node s depends on the output of the network
N .

Theorem 5: ASYMMETRY is NP-hard.
Proof: Consider the reduction described above. Let s and

d be the pair of ASes considered in ASYMMETRY problem.
Node d is guaranteed to select (d s), since it is the only
path that d accepts to s and the path is always available at
d (because of the direct link between s and d).

Now consider the path s selects to reach d. Since each of
the n DISAGREE gadgets can independently converge to two
distinct stable states, we have 2n possible combinations of
stable states, each of which is mapped to a boolean assignment
of the variables in F . For each possible stable state, by
construction of the BGP network N , node o will have a route
to d if and only if formula F is satisfied by the assignment
corresponding to the stable state. Hence, s can choose its
preferred path (s o . . . d) if and only if F is satisfiable.
Otherwise, s will have to backup on (s d).

To summarize, if F is satisfiable then there exists a state in
which s does not select (s d), which is the reverse of the path
from d to s. The NP-completeness of the SAT problem then
yields to the statement.

3) Solvability and Trapped: We now consider the SOLV-
ABILITY and TRAPPED problems that deal with convergence
guarantees of a BGP configuration. Namely, SOLVABILITY
consists of deciding if a given BGP configuration admits at
least one stable solution, while TRAPPED is the problem of
deciding if the network can be trapped in permanent routing
oscillations, like those occurring in a BAD-GADGET. For both
problems, we use the reduction represented in Fig. 11. In the
reduced instance, a BAD-GADGET exists between nodes p1,
p2, and p3. The BAD-GADGET is prevented from oscillating
if and only if p2 receives path (o . . . d) from o. However, by
construction of the reduced instance, deciding if o selects path

c

x̄1x1

(x̄1x1cad)
(x̄1cad)

(x1x̄1cad)

(x1cad)

xnx̄n. . .

(x̄nxncad)
(x̄ncad)

(xnx̄ncad)
(xncad)

i1 in

BGP network N
realizing boolean formula F

o

(i1x1x̄1cad) (inxnx̄ncad)

(o . . . cad)

a b
(abd)

(ad)

(bad)

(bd)

(cad)

e

(eo . . . cad)

(ebd)

(ed)

f
(fged)

(fed)

h
(hfed)

(hed)

g

(ghed)

(ged)

d

Fig. 12. Scheme of the reduction from SAT to UNIQUE.

(o . . . d) corresponds to decide if a boolean assignment that
satisfies F exists. As a result, the following two theorems
hold.

Theorem 6: SOLVABILITY is NP-hard.
Theorem 7: TRAPPED is NP-hard.

4) Unique and Multiple: UNIQUE is the problem of decid-
ing if a single stable state exists for a given BGP configuration
(as opposed to the existence of multiple stable states). Fig. 12
shows how to prove the NP-hardness of the UNIQUE prob-
lem, applying again our reduction technique. In the reduced
instance in Fig. 12 the presence of a stable state is guaranteed
in one of the two stable states of the DISAGREE between a and
b. Indeed, if a steadily selects (a b d) and b steadily selects
(b d), then no route is provided to c, which implies o having no
route, and e selecting (e b d). This, in turn, implies nodes f , g,
and h having no route to d. However, if a steadily selects (a d)
and b steadily selects (b a d), then the presence of additional
stable states depends on the formula F . Indeed, if F is not
satisfiable then o can never have a route. In this case, e is
forced to select (e d) activating the BAD-GADGET between
f , g, and h. As a consequence no other stable state exists.
Otherwise, if F is satisfiable then o can steadily select a route
for at least one combination of inputs to N . This involves that
e will select the route it receives from e, hence preventing
the BAD-GADGET between f , g, and h from oscillating, and
forcing a second stable state. This allows us to formulate the
following theorem.

Theorem 8: UNIQUE is NP-hard.
The NP-hardness of UNIQUE directly implies the NP-

hardness of MULTIPLE, as already noted in [17].
Theorem 9: MULTIPLE is NP-hard.

11

pulse

head movement
(left=0, right=1)

FFp
i−1 FFp

i FFp
i+1

δ-flip-flop for

generator

Ap
i Bp

i

Cp
i

Bp
i−2

Dp
i

Ap
i+2

(a) Logic circuit to update the position
of the tape head.

clock

with symbol

FFt
k

FF p
k

to write

At
k Bt

k

Ct
k

δ-flip-flop

(b) Logic circuit to update the tape.

clockFFr

Ar
0

Cr

Ar
n

. . .

. . .

FF p
0 FF t

0 FF p
n FF t

n

(c) Logic circuit to read the tape.

Fig. 13. Building Blocks of the Turing Machines.

B. Details on the Turing Machine Building Blocks

In this appendix, we provide more details on the eBGP
configuration corresponding to a given Finite Turing Machine
(FTM). In particular, we illustrate the logic circuits in Fig. 4,
except the one realizing the δ function which strongly depends
on the given FTM to be simulated.

The logic circuit to update the position of the head is
depicted in Fig. 13(a), where FF p

i represents a D flip-flop
which outputs a 1 if the head is currently on the i-th cell of
the tape. Before turning on the Turing machine, all flip-flops
FF p

i store a 0 except FF p
0 , because the head is on the first

cell of the tape. The logic circuit in Fig. 13(a) ensures that,
throughout the computation, only one flip-flop FF p

i can store
a 1 at any given time. Intuitively, this models the fact that
the head can only be in a single position at any given time.
The flip-flops are enabled by a simple circuit that generates
a pulse (i.e., a 1 immediately followed by a 0) each time the
clock has a transition from 0 to 1. The input of the circuit is
the output signal of the δ-flip-flop FF ′ which stores the next
movement of the tape head. Without loss of generality, we
assume that the transition function δ of the Turing machine
has no transitions where the tape head remains on the same
cell.

Since the AND gates Ap
i and Bp

i take FF p
i as input, only

one AND gate outputs a 1: for example, if the tape is on cell
k and the output of the δ function is 0, only Ap

k will output a
1, while all other AND gadgets will output a 0. The OR gates
allow us to write a 1 in FF p

j i) when the head is at position
j1 and it must move to the right; or ii) when the head is at
position j + 1 and it must move to the left.

We now show how the logic circuit in Fig. 13(a) ensures
that if FF ′ stores a 0 (1, resp.) then the head must move to
the cell which is at the left (right, resp.) of the current cell.
Indeed, consider the case in which the current position of the
head is k, and the output of FF ′ is 0. In this case, only FF p

k

stores a 1, until time t̄ at which the clock makes a transition

from 0 to 1. At time t̄, all the AND gates Ap
i and Bp

i such that
i 6= k output a 0, which implies FF p

i = 0 for all i < k−1 and
i > k + 1. Moreover, Ap

k+2 = 0 since FFk+2 = 0, and Bp
k

since FF ′ = 0, which imples FF p
k+1 = 0. We have Ak = 1

which implies FF p
i−1 = 1. A symmetric argument can be

applied to show that FF p
i+1 = 1 if FF ′ = 1.

Fig. 13(b) shows the logic circuit used to update the tape.
The input of this circuit is represented by the symbol to write
on the tape (as stored in one of the δ-flip-flops) and the output
of the flip-flops representing the position of the head on the
tape. The figure illustrates only the part of the circuit related
to one cell of the tape, represented by the flip-flop FF t

k.
Consider now the dynamic behavior of the circuit. When FF k

t

is disabled by the clock (clock at 0), it outputs its stored value.
When it is enabled by the clock (clock at 1), the following
cases can occur.

• FF p
k outputs 0, meaning that the current position of the

head is j with j 6= k. In this case, FF t
k continue to

store the same value as before. Indeed, the output of Bk

is 0 no matter what is the symbol to write. Hence, the
output of Ck depends only on the output of Ak, and since
FF p

k = 0, Ak = FF t
k.

• FF p
k outputs 1, meaning that the current position of the

head is k. In this case, the new symbol is written on FF t
k.

Indeed, the output of Ak is 0 since one of this input (NOT
FF p

k) is 0. Thus, the output of Ck depends only on the
output of Bk, which, in turn, coincides with the symbol
to write.

Finally, Fig. 13(c) illustrates the logic circuit which provides
the symbol stored in the current cell of the tape as input to
the circuit realizing the δ function. Such a symbol is stored
in a flip-flop FF r which is enabled by the clock. The circuit
is based on a set of AND gates Ar

i , and a single OR gate
Cr. Each AND gate Ar

i receives as input the value stored in
FF p

i and FF t
i . Assume that the position of the head is k.

By definition of the flip-flops FF p
i that implement the head

12

d

SR

R = 0

z

FFt
i

e

(e z d)

o
FF

(z d)
(z o . . . d)

clock

FF p
i

Ct
i

Fig. 14. Initialization of the flip-flops representing the tape.

position, FF p
k stores a 1, while all the others store a 0. Hence,

Ai = 0 for all i 6= k. Ak will output the same value stored by
FF t

k. As a consequence, the value stored in FF r will be the
same as the value of the current cell of the tape FF t

k.

C. Initialization of the Finite Turing Machine

Some of the BGP problems are defined on precise routing
states, e.g., states actually reachable by BGP. Given an FTM
and an input string written on its tape, we now show how to
build a BGP configuration such that the flip-flops representing
the tape are correctly initialized by BGP dynamics before
simulating the FTM computation.

Writing the initial value in the tape flip-flops is straightfor-
ward: it suffices to have the destination d directly connected
to all the flip-flops representing cells of the tape that store a 1.
The main problem, however, is to ensure that the δ function
is able to overwrite the initial value when it needs to. Since
in BGP any route is preferred to the absence of a route, we
must carefully handle the case when the δ function must write
a 0 (i.e., absence of a route) in a cell that has been initialized
with a 1 (i.e., presence of a route).

Fig. 14 depicts how to solve the problem. Consider the OR
gate Ct

i . Route (e z d) is provided by node e as input to FF t
i .

However, z chooses route (z d) only if the output of the SR
flip-flop SR − FF is 0. Observe that the input signal R of
the SR flip-flop SR − FF is always set to 0. This implies
that, after the first time that that the S input of the flip-flop
is set to 1, the SR flip-flop will always store a 1. Since the S
input of SR − FF depends on FF t

i and the clock, we have
that SR − FF will always store a route after cell FF t

i has
been read for the first time. This ensures that the initial value
is deleted after the first time the cell is read. The circuit to
update the tape will then overwrite the initial value with the
output of the δ function.

D. Analysis of the Simulation of a Finite Turing Machine

In Section III-A, we claimed that, in the min-max model,
delay can be assigned to links in such a way that each step
of a Finite Turing Machine (FTM) can be simulated by the
corresponding BGP configuration in a separate clock period.

We now prove our claim by showing a convenient link delay
assignment.

Delays between the logic circuit blocks are shown in Fig. 4.
In the figure, thick and thin lines represent delays of (2

3T,
2
3T+

ε) and (ε, 2ε) respectively, where 2T is the period of the clock
and ε << T . All the internal delays of the various logic circuit
blocks are set to (ε, 2ε). Observe that, since ε << T , the
ordering of events occurring during one clock period, is not
influenced by ε link delays or their sum. Hence, we disregard
of ε delays in the following.

We now show that the ordering of events occurring during
one clock period is as defined in Section III-A, allowing us to
simulate any FTM in the min-max model. The computation
starts at time t = 0, with the output of the clock at 0 until
t = T . Before t = T , the only event that occurs is the transfer
of the symbol in the current cell of the tape to function δ. At
time t = T the clock signal changes from 0 to 1, enabling the
δ-flip-flops. As a consequence, the δ-flip-flops change their
output values according to the output of the δ function. After
2
3T , the new output of the δ-flip-flops is provided as input
to the logic circuit that controls the tape head, to the logic
circuit to update the tape, and to the flip-flops that store the
state of the FTM. Hence, at time t = T + 2

3T = 5
3T , the state

and the position of the head are updated. Moreover, at time
T + 2 2

3T = 7
3T , the tape is updated, and the new symbol on

the tape and the new state of the FTM are provided as input to
the δ function. Thus, the new output of function δ is ready at
time 7

3T . However, since 7
3T > 2T and 7

3T < 3T , the clock
is at 0 and all flip-flops are disabled at that time, and nothing
changes anymore until t = 3T , when the simulation of the
next step of the FTM is performed.

Observe that if ε = 0 the arguments above are still valid.
This means that the above simulation works also when the
minimum and maximum delay on each link are set to the
same value, i.e., in the completely synchronous model.

E. The IGP Builder (IB) Algorithm

Consider a single destination d. Let E be the set of egress
points to d. Let λv : E → N be the egress point ranking
function of router v, such that λv(ej) = i if and only if
ej is the i-th most preferred egress point by v. Since the
BGP process forces each router to deterministically select only
one route, egress point preferences at each router are totally
ordered, that is, ∀ei 6= ej λ

v(ei) 6= λv(ej). Given the ranking
functions of all the routers in the networks, the IB builds the
IGP graph as follows. For each pair of a router r and an egress
point e, we add a link (r, e) in the IGP graph. To each link
(r, e), we assign a weight w(r, e) = λr(e) + |E|.

We now prove that the IB algorithm is correct, that is, it
builds an IGP graph consistent with the given egress point
preferences at each router. Let dist(v, u) be the length of the
shortest path from v to u. We say that an IGP topology realizes
the given ranking functions if for each router v 6∈ E and each
arbitrary pair of distinct egress points e1 and e2, λv(e1) <
λv(e2) implies that dist(v, e1) < dist(v, e2).

13

Lemma 1: In the IGP topology built by the IB algorithm,
the shortest path between any router r and any egress point e
is (r e).

Proof: Let G = (V,E) be the IGP topology built by
the IB algorithm. Consider any router r and any egress point
e. By construction, the weight of the path (r e) is equal to
w(r, e) = λr(e) + |E| ≤ 2|E|.

We now show that any path P from r to e, with P 6=
(r e), has a weight higher than w(r, e). By definition of P ,
P contains at least two edges. By definition of the weight
function adopted in the IB algorithm, the weight of P is equal
or greater to 2+2|E|. Hence, the weight of any path P 6= (r e)
is higher with respect to (r e), yielding the statement.

Theorem 10: Given a set Λ of ranking functions, the IB
algorithm builds an IGP topology that realizes Λ.

Proof: Let G = (V,E) be the IGP topology built by the
IB algorithm. Consider an router r and any pair of egress
points e1 and e2, such that r prefers routes from e1 to
routes from e2. By Lemma 1, dist(r, e1) = w(r, e1) and
dist(r, e2) = w(r, e2). By definition of the weight function
adopted in the IB algorithm, we then have w(r, e1) < w(r, e2),
which proves the statement.

