
Integrating Verification and Repair
into the Control Plane

Aaron Gember-Jacobson
Colgate University

agemberjacobson@colgate.edu

Costin Raiciu
Univ. Politehnica of Bucharest

costin.raiciu@cs.pub.ro

Laurent Vanbever
ETH Zürich

lvanbever@ethz.ch

ABSTRACT
Network verification has made great progress recently, yet
existing solutions are limited in their ability to handle specific
protocols or implementation quirks or to diagnose and repair
the cause of policy violations. In this positioning paper, we
examine whether we can achieve the best of both worlds: full
coverage of control plane protocols and decision processes
combined with the ability to diagnose and repair the cause
of violations. To this end, we leverage the happens-before
relationships that exist between control plane I/Os (e.g., route
advertisements and forwarding updates). These relationships
allow us to identify when it is safe to employ a data plane
verifier and track the root-cause of problematic forwarding
updates. We show how we can capture errors before they are
installed, automatically trace down the source of the error
and roll-back the updates whenever possible.

1 INTRODUCTION
“Network outages are the new natural disasters”

—G. Clay Whittaker
Ensuring a network works according to operator policies

is of crucial importance to airlines, content providers, banks
and really all other enterprise networks worldwide. When
such networks fail or behave incorrectly they cause massive
disruption, ranging from grounded airplanes with stranded
passengers to millions in lost revenue [37].

Using formal methods to synthesize a correct network di-
rectly from policies [5,14,33,35] can avoid problems from the
start. Unfortunately, such methods require an iterative speci-
fication and refinement process that is lengthy and requires
significant formal methods expertise, making it a non-starter
for most networks. Instead, most network operators continue
to make manual configuration changes during maintenance
windows and use simple tests to detect problems.

Verifying the correctness of a configuration change is in-
credibly complex, because network control planes routinely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVI, Palo Alto, CA, USA
© 2017 ACM. 978-1-4503-5569-8/17/11. . . $15.00
DOI: 10.1145/3152434.3152439

involve millions of lines of code from different vendors [19]
running in an unpredictable distributed environment. To man-
age this complexity, researchers have developed verification
techniques that verify a model of the control plane. The mod-
els aim to capture the behavior and interactions of distributed
protocols and range from simple graph abstractions [15, 18]
to more complex models expressed in first-order logic [4,16].
The models can be used not only to detect which subsets of
traffic are improperly forwarded, but also to identify [16] and
repair [17] the control plane elements (e.g., routing protocol
instances or filters) that contributed to the policy violations.
However, to make verification and repair tractable, the models
often consider a fraction of the control plane’s functionalities,
ignore some of the “ugly” implementation details, and over-
look implementation quirks specific to each vendor. Because
of these discrepancies, properties holding on the model may
not hold in practice, and vice-versa. A clear parallel exists in
the security world where published safety proofs of protocols
such as TLS 1.2 [11, 25] actually missed many attacks (e.g.,
Heartbleed [12]), because of the gap between the simplified
model and the implemented protocol.

A second class of verification tools sidestep the complexity
of the control plane by instead verifying the control plane’s
output (i.e., the data plane) [22, 24, 34]. The data plane
implicitly captures all control plane functionality and is com-
paratively simpler to verify due to its limited operations (es-
sentially, forwarding). However, without visibility into the
control plane, data plane verifiers are unable to explain why
a policy violation occurred. Consequently, the only imme-
diate solution is to block data plane updates while network
operators manually diagnose and correct the control plane.
Blocking these updates can cause inconsistencies between the
data and control planes that lead to further policy violations.

In this paper, we explore whether we can achieve the best
of both worlds: full coverage of control plane protocols and
decision processes combined with the ability to diagnose and
repair the cause of violations. To this end, we propose an
approach that integrates verification and repair techniques
into the operation of distributed control planes. At a high
level, our proposal is for each router to capture all control
plane inputs and outputs, send them to a centralized data
plane verifier, and only allow the data plane to be updated if
the inputs and outputs are deemed correct.

Translating this simple idea to reality is tougher than it
appears at first sight: the control plane is a distributed sys-
tem and even obtaining a consistent snapshot of the control

R1 R2

R3

P

iBGP

iBGP

iBGP

eBGP eBGP

eBGP

P, Pref=20
P, R1 P, R1

P, R1

P, Pref=20, R1 P, Pref=20, ext

P, Pref=20, R1

FIB

RIB

Legend	
Route update

(a) Route via R1 available.

R1 R2

R3

P

iBGP

iBGP

iBGP

eBGP eBGP

eBGP

P, ext P, R2

P, R2

P, Pref=20, R1
P, Pref=30, ext

P, Pref=20, ext
P, Pref=30, R2

P, Pref=20, R1
P, Pref=30, R1

P, Pref=30

(b) Route via R2 becomes available.

R1 R2

R3

Verifier

P
vi

a
R 1,

 u
pl

in
k 1 P via R

2 ,uplink
2

(c) The difficulty
of distributed data
plane snapshotting.

Figure 1: Example network to show the difficulty of network verification.

plane’s inputs and outputs for verification is tricky; further-
more, selectively blocking data plane updates will result in
incorrectly functioning protocols. To this end, our approach
tracks happens-before relationships (HBRs) [26] between
control plane inputs and outputs and uses the HBRs to sup-
port correct snapshotting, root-cause analysis and roll-back.

2 MOTIVATION
We use the network in Fig. 1 to show the complexity of
maintaining policy compliance. Routers R1, R2, and R3 are in
the same administrative domain and use iBGP to disseminate
external routes internally. There are two uplinks, via R1
and R2. Both R1 and R2 learn a route to prefix P via their
respective eBGP sessions. The network policy states: R2 is
the preferred exit point when its uplink is up; otherwise, R1
should be used. To implement the policy, operators configure
a local preference (LP) of 30 on R2 and 20 on R1.

Verification amidst routing updates. Consider a scenario
where only the route via R1 is available (Fig. 1a), and then R2
receives an advertisement for P on its uplink (Fig. 1b). In a
few steps, all the routers will converge to a correct data plane
in which both R1 and R3 forward traffic via R2, as intended.

Unfortunately, analyzing this scenario using existing net-
work verifiers is tricky. Some control plane verifiers [18]
lack support for all of the routing protocols used in this net-
work. Other control plane verifiers [4, 15, 16, 36] model all
protocols and path selection criteria used in this network, but
ignore vendor-specific implementation details that may apply
in other scenarios—e.g., differences in BGP path selection
rules across vendors [9, 21].

Feature coverage is not a problem for data plane veri-
fiers [22,23,24,30,31,34], because they operate on the output
of the actual control plane. However, they rely on a central-
ized snapshot of the data plane, which is difficult to construct,
because routers may provide a snapshot of their forwarding
information base (FIB) at slightly different times.1 This is
the case in Fig. 1c, where the FIB update at R2 is just missed
by the verifier (who gets a stale FIB entry), while R1 and

1This issue does not exist in software-defined networks (SDNs), because all
changes are initiated by a central controller that can be co-located with the
verifier.

R3 report their updated FIBs. Consequently, the data plane
verifier will find a loop between R2 and R1 that sinks all traffic
destined to P . This loop does not appear in practice, though,
because of the way BGP works: R1 and R3 will only receive
the update after R2 installs it in its FIB.

Solving this problem is not easy. Verifying the actual
control plane, as opposed to a model, is intractable. Waiting
for the network to “converge” in order to capture a consistent
data plane snapshot is elusive, as the network is constantly
receiving new updates and can therefore be in a continuous
state of change.

Correcting or preventing policy violations. As another
example, Fig. 2a shows an ill-considered configuration update
on R2 that sets the LP to 10, which is lower than the value used
by R1. This will cause all routers to switch to using the uplink
from R1 instead of R2, thus violating the policy. Assuming
data or control plane verifiers can detect the violation, we still
face the challenge of correcting or preventing the problem.

Data plane verifiers only analyze the control plane’s output,
and thus have no knowledge of how or why the control plane
produced the problematic forwarding updates. Consequently,
the only possible recourse is to block or revert the updates.2

However, this creates an inconsistency between the data and
control planes that may lead to further policy violations. For
example, assume we block the FIB updates shown in Fig. 2 in
order to preserve the behavior that traffic for P is sent via R2
when its uplink is available. Now, assume R2’s uplink fails,
and R2 withdraws the route for P . The routers will not update
their FIBs, because the control plane thinks the FIBs have the
entries in Fig. 2b, which send traffic via R1. However, due to
the blocked FIB updates, the FIBs actually have the entries
in Fig. 1b, so traffic for P will be sent to R2 and dropped.

In contrast, tools that operate on the control plane can, in
theory, identify [16] and correct [17] the root cause of the
violation. However, current control plane repair tools [17] are
limited in the protocols and policies they support and cannot
correct the problem shown in Fig. 2. Consequently, operators
must manually identify and implement a fix. This can be a

2The former requires modifying a router’s control plane to buffer forwarding
updates until they have been verified, which is similar to interposing on the
controller’s output in SDNs [22, 24].

R1 R2

R3

P

iBGP

iBGP

iBGP

eBGP eBGP

eBGP

P, Pref=10
P, Ext P, Ext
P, Pref=30, Ext

10
P, Pref=20, Ext
P, Pref=10, R2

P, R2 P, Pref=10, R2

(a) Local pref configuration changed on R2: update propagates
and makes R1 switch to using its own uplink, violating the pol-
icy.

R1 R2

R3

P

iBGP

iBGP

iBGP P, Pref=20

eBGP eBGP

eBGP

P, R1 P, Ext
P, Pref=20, Ext
P, Pref=10, R2

P, Pref=20, R1
P, Pref=10, R2

P, R1

P, Pref=20, R1
P, Pref=10, Ext

(b) R1 announces own uplink route and this results in data
plane policy violations at R2 and R3.

Figure 2: Ensuring policy compliance is hard, even in a
simple BGP network.
lengthy process (on the order of hours) due to the complexity
of analyzing how a change will impact the network [6].

3 INTEGRATING VERIFICATION AND
REPAIR INTO THE CONTROL PLANE

The aforementioned issues stem from a disconnect between
the operation of the actual control plane and the systems used
for verification and repair: control plane verification [4, 15,
16, 18, 36] and repair [17] systems overlook (many) aspects
of the actual control plane, while data plane verifiers [22, 23,
24, 30, 31, 34] only consider the control plane’s output.

Addressing these issues requires integrating verification
and repair techniques into the operation of the control plane
(Fig. 3). Verification must be based on the actual decisions
made by control plane, and corrections must be made in
the control plane to address (impending) policy violations.
This requires mechanisms to track and manipulate the control
plane’s actions.

We obtain such visibility and control by interposing on the
control plane’s inputs and outputs (I/Os) (§4). By monitoring
the control plane’s I/Os, we can build a consistent snapshot of
the network’s data plane to soundly verify policy compliance
(§5). By computing the provenance of problematic control
plane I/Os, we can identify which I/Os to actively block in
order to maintain policy compliance (§6).

BGP	
instance

FIB

OSPF	
instance

Configuration	changes

RIB	updates

FIB	updates

CAPTURE CONTROL
PLANE I/OS

BGP	RIB OSPF	RIBDATA PLANE VERIFIER

Data	plane
snapshot

Bad	FIB
updates
TRACE PROVENANCE

BLOCK I/OS

Root
cause

Route	
updates

Figure 3: Integration of verification and repair mecha-
nisms into the control plane

4 TRACKING THE CONTROL PLANE
To verify policy compliance and uncover the root cause of
policy violations, we need to reason about the origin of any
FIB entry and the way related control plane events propagate
through the network. Prior works on network provenance [8,
16, 38, 40, 41] have used datalog-based models of the control
plane [16, 28, 29] to enable such reasoning. However, as
discussed in §2, producing high fidelity models of control
plane algorithms is difficult. Fortunately, detailed modeling
of a router’s algorithms is unnecessary for identifying the
cause(s) of FIB updates. We claim that observing the inputs
and outputs (I/Os) of a router’s control plane and tracking the
dependencies between them provides sufficient information
to safely verify and remediate problematic FIB updates.

4.1 Happens-Before Relationships
A router’s control plane receives three types of input: protocol
configurations, hardware status changes (e.g, link down), and
route advertisements and withdrawals. Based on this input,
protocol- and vendor-specific algorithms produce three main
types of output: FIB entries, routing information base (RIB)
entries, and route advertisements and withdrawals (for other
routers). These outputs may be produced whenever a router
receives new inputs. For example, when R2 in Fig. 1 receives
an eBGP advertisement for prefix P , it installs an entry for P
in its BGP RIB.

Naturally, the input(s) on which an output depends must
be received before the output is produced. For example, R2
must receive the advertisement for P before it installs a RIB
entry for P . In other words, there exists a happens-before
relationship (HBR) [26] between the input and output. We
can generically express this relationship as [router R receive
protocolC advertisement for P]→ [R install P in theC RIB],
where [A]→ [B] denotes I/O A happens before I/O B.

HBRs may also exist between two of a router’s outputs or
between one router’s output and another router’s input. For
example, R2 must install a RIB entry for P before it can install
a FIB entry for P , and R2 must send an iBGP advertisement
for P before R1 or R3 can receive an iBGP advertisement for
P . Written generically: [R install P in the C RIB] → [R

R2 config change

cause R2 send iBGP ad
P ➡ R2, LP=10

R2 update P ➡ Ext,
LP=10 in BGP RIB

R1 recv iBGP ad
P ➡ R2, LP=10

R3 recv iBGP ad
P ➡ R2, LP=10

R3 update P ➡ R2,
LP=10 in BGP RIB

R1 update P ➡ R2,
LP=10 in BGP RIB

R1 install P ➡ Ext
in FIB fault

Figure 4: Happens-before graph for scenario in Fig. 2

install P in the FIB] and [R′ send protocol C advertisement
for P]→ [R receive C advertisement for P]3.

The aforementioned HBRs apply to all common distributed
routing protocols (e.g., BGP, OSPF, RIP, EIGRP). Additional
HBRs apply to specific routing protocols, route redistribution
and selection mechanisms, and network events (i.e., configu-
ration or hardware status changes). For example, with BGP
[R install P in BGP RIB] → [R send BGP advertisement
for P], whereas with EIGRP [R install P in FIB]→ [R send
EIGRP advertisement for P].

4.2 Tracking HBRs
To determine a FIB entry’s provenance, we must track control
plane I/Os and HBRs in the live network. Capturing control
plane I/Os is straightforward: most commercial router plat-
forms provide a mechanism for logging control plane I/Os
locally or to a remote server [10, 20], and open-source plat-
forms [3] could be readily extended to provide such function-
ality. Identifying HBRs between the captured I/Os is more
challenging: without access to a router’s internals, we cannot
track the data or control flow between a control plane’s input
and output functions. Instead, we must rely on properties of
the I/Os themselves to infer their relationships. We intend to
investigate several possible techniques:

Prefixes. All control plane outputs and incoming route ad-
vertisements contain a prefix. I/Os with the same prefix are
frequently related: e.g., in Fig. 1, the route advertisement
received by R2, the RIB entry installed at R2, and the route
advertisements sent by R2 and received by R1 and R3 are re-
lated. In contrast, the FIB entry for P installed on R2 does not
depend on the iBGP advertisements for P sent by R2, despite
their common prefix. Prefixes, like timestamps, can only be
used to filter I/Os for possible HBRs.

Timestamps. The (wall-clock) time at which an I/O was
captured can be used to identify I/Os that happened before
other I/Os on the same router. However, I/Os that occur se-
quentially in time are not necessarily dependent: e.g., R2 in
Fig. 1 may install a FIB entry for P before sending iBGP
advertisements for P , but the latter does not depend on the
former. Thus, timestamps can be used to filter the HBRs con-
sidered/generated by other strategies, but timestamps cannot
be used as the sole mechanism for identifying HBRs.

3R and R′ may be connected at layers 1 (physical), 2 (link), or 3 (network),
depending on the capabilities of the protocol.

Rule matching. In §4.1 we listed several “rules” that stan-
dard protocols follow. Given an I/O that matches the right-
hand-side of a rule, we can search the (timestamp- and prefix-
filtered) stream of I/Os for an I/O that matches the left-hand-
size of the rule. A successful match implies there exists an
HBR between the two I/Os. The disadvantage of this ap-
proach is that it requires understanding protocol standards to
construct the rule set.
Pattern matching. To avoid the need for a detailed under-
standing of protocol implementations, we could instead look
for I/O patterns in policy-compliant networks. If one I/O
frequently occurs after another I/O, then we could infer the
former must happen-before the latter. By looking for the
same patterns in a broken network, we can produce a list of
observed HBRs. This approach has the benefit of being fully
automated, but we risk missing an important HBR, because
it may not occur in the network(s) from which we derive
patterns. Imperfect HBRs can lead to false positives and
negatives during verification (§5). We intend to deal with this
problem by adapting the behavior of our system according to
a statistical confidence attached to each inferred HBR, only
alerting and acting on a violation when it is high enough.

In practice, we expect a combination of these (and other)
techniques will be necessary to obtain suitable accuracy.

4.3 Happens-before Graph
The HBRs that exist between control plane I/Os are often
quite complex. In particular, an I/O may both a consequent
and an antecedent of other I/Os: e.g., the RIB entry for P on
R2 in Fig. 1 requires the eBGP advertisement for P and is
required for the FIB entry and iBGP advertisements for P .

To track these complex relationships, we can aggregate the
observed HBRs into a happens-before graph (HBG). Vertices
correspond to specific control plane I/Os, and directed edges
represent HBRs. Fig. 4 depicts the HBG for the scenario in
Fig. 2. In the next two sections, we discuss how the HBG
helps us safely verify policy compliance during distributed
routing updates (§5) and address the root cause of policy
violations while keeping the control and data plane in sync
(§6). Note that SDNRacer [13, 32] also relies on HBGs to
verify correctness, but SDNRacer is limited to centralized
control-planes, can only detect one type of correctness issue
(race conditions), and cannot help in identifying root causes.

5 DETECTING POLICY VIOLATIONS
As discussed in §2, data plane verifiers require a consistent
global view of the data plane to avoid missing violations or
raising false alarms. In particular, they require a snapshot
that reflects the FIB entries a packet would encounter as it
traverses the network at a specific instance in time.4 This en-
sures the verifier detects all transient and persistent violations

4In reality, packets take time to traverse the network and encounter router’s
FIBs at different instances in time. Thus, a lack of violations across consec-
utive consistent data plane snapshots does not strictly guarantee a packet
does not violate a policy [39]. However, HBGs could be used to construct

for properties that should always be true (e.g. traffic should
never bypass a firewall).

Such a snapshot can be easily computed given an exact
(i.e., total) order of FIB updates. However, FIB updates
occur asynchronously in distributed control planes, so it is
impossible to compute such a total order.

Instead, we make the observation that a packet traverses
routers in the inverse order of route advertisements. Con-
sequently, a packet and a route update currently propagat-
ing through the network will “collide” at some router. Any
routers the packet traverses before this collision will not have
seen the route update, and hence the FIBs at these routers
will contain the entries that existed prior to the update. Any
routers the packet traverses after this collision will have seen
the route update, and hence the FIBs at these routers will
have (if necessary) been updated based on the route update.
Thus, to obtain a consistent snapshot—i.e., one that reflects
the FIB entries a packet would encounter as it traverses the
network at a specific instance in time—we simply need to
ensure that if a FIB snapshot from one router (R) was taken
after applying a route update (U), then the FIB snapshot from
every other router that had previously received U must also
have been taken after applying U .

We can easily use an HBG to identify which routers must
have received a route update, and hence which routers we
must receive FIB updates from in order for the snapshot to
be consistent. In particular, assume the HBG contains a FIB
update for prefix P on router R, and one of the parents of
this FIB update is an advertisement for P received by R. We
know from our list of common HBRs (§4.1), that a router
R′ must have sent the advertisement for P before R received
it. Consequently, the HBG must contain this output. If the
HBG doesn’t contain such an output, then all router I/Os
have not been received and integrated into the HBG, so we
may be missing some FIB updates. If the HBG contains
such an output for router R′, then we know the FIB updates
from R′ have been received. If there is a FIB update for P
on R′ that depends on a route advertisement for P , then we
repeat the process to make sure we have seen all I/Os from
a router R′′ that sent the advertisement to R′. The process
repeats until some FIB update for P does not depend on a
route advertisement, or the router from which the update was
received is external to the network.

Distributed verification. Existing data plane verifiers are
centralized: they gather the snapshot of the data plane on a
single machine for verification. This approach makes sense
for offline analysis and in SDNs with centralized control
planes. However, in a distributed control plane, having a
centralized verifier reduces robustness and scalability.

Fortunately, several data plane verifiers [22, 23, 24] can
be readily transformed intro distributed verifiers. The basic
idea is to pass partial verification results between network
routers (or a distributed set of verification nodes) and have

all possible sequences of FIBs a packet could encounter, thereby provide a
means to verify per-packet policy compliance.

each router uses its local FIB snapshot to conduct parts of the
verification. For example, with HSA [23], each router could
maintain its own transfer function and send the output of
the transfer function to downstream routers that would apply
their transfer functions. This approach adds time overhead,
due to the delay in passing partial verification results between
routers, but the approach avoids the potential for bottlenecks
at a centralized verifier.

Construction and analysis of the HBG can also be dis-
tributed. In particular, each router can store its own happens-
before subgraph containing that router’s control plane I/Os.
Partial paths through the HBG can be passed to neighboring
routers that can expand the paths based on their happens-
before subgraph.

6 REPAIRING POLICY VIOLATIONS
As discussed in §2, addressing a policy violation by simply
blocking problematic FIB updates can lead to other problems.
Instead, we want to address the root cause of the violation.
In this section, we discuss ways in which HBRs can be used
for automatically repairing the control plane, in increasing
order of sophistication.

Reverting the root cause event, prior to installing any
problematic FIB updates. The HBRs we observe are the
sequence of control plane events that led the network to enter
a problematic state. By traversing the HBG starting from
a problematic FIB update, we can determine the sequence
of I/Os that led to the policy violation. Any leaf nodes we
encounter represent the root cause(s) of the event. For ex-
ample, if we traverse the HBG in Fig. 4 starting from the
vertex “R1 install P → Ext in FIB“, we will reach the leaf
node “R2 configuration change,” which is the cause of the
policy violation in our example (Fig. 2b). We would therefore
automatically revert it and report the configuration change
as problematic to the operator. If the change was intended,
the operator can simply adapt the policy accordingly (e.g., by
stating that R1 should be used instead of R2). This illustrates
another benefit of our approach: it ensures the high-level
policy and network-wide configurations implementing it are
always in-sync.

Reverting the root cause event, early on in the computa-
tion. A more advanced mitigation technique is blocking the
root cause event as soon as possible—prior to any violation
detection. Doing so requires us to be able to reason about the
data plane outcome of any input event—i.e. it requires us to
be able to “unfold” the HBRs to detect problems before they
arrive. Of course, doing so without a model of the control
plane is challenging. Our plan here is to leverage the insight
that control plane computations tend to be highly repetitive
across prefixes. Many destinations are treated alike by the
network control plane and can therefore be grouped into few
equivalence classes. Studies have shown that even large net-
works (100K prefixes) often have less than 15 equivalence
classes in total [7]. This repetition enables us to automatically

R1	 localpref	 =200	

FIB:	 P	 via	 R1	

Withdraw:	 P	 via	 R2	

8ms	

8ms	

0.1ms	

R1	 localpref	 =200	

Route:	 P	 via	 R1	

8ms	

FIB:	 P	 via	 R1	

8ms	

Withdraw:	 P	 via	 R2	

Config	 TTY0	

P:	 soF	 reconfiguraGon	

FIB:	 P	 direct	

Route:	 P	 via	 R1	

25s	

Route:	 P	 via	 R1	

4ms	

0ms	

Withdraw:	 P	 via	 R2	

Router	 1	 Router	 2	 Router	 3	

Figure 5: HBG captured from an emulated network us-
ing Cisco routers

learn a model of the control plane behavior from the data that
we can then use to predict control plane outcomes.

7 FEASIBILITY
To understand the feasibility of our proposal, we deployed
an example similar to Fig. 2 in an emulated network [1]
containing three Cisco routers (VM images). We enabled
logging on all routers and captured and parsed the outputs of
the logs. The network starts from a correct state where routers
R1 and R3 are sending traffic to the external prefix P via router
R2. Next, we manually change the localpref attribute on router
R1 to 200, and manually extract the interesting events from
the router logs. The resulting HBG is shown in Fig. 5.

Twenty seconds after the console configuration, router R1
starts soft reconfiguration: it revisits the routes it has received
from its neighbors, re-running the BGP decision process.
Very quickly (within 4ms), a direct route to P is installed in
the FIB, and after 4ms this route is announced to the other
routers. Deriving the HBG on R1 is fairly straightforward,
because the FIB update closely follows the soft reconfigura-
tion. Moreover, the announcement and FIB update are not
only close in time, but also target the same prefix, thus sug-
gesting an HBR. The only HBR that is difficult to extract is
the one between the TTY config and the software reconfigu-
ration, which are surprisingly far apart (25s) in our emulated
network.

On routers R2 and R3 the logs begin with the reconfigura-
tion of localpre f for R1, but there are no corresponding logs
on R1 that signal the sending of this information; therefore we
have no edges in the HBG. However, the new route received
is caused by the route advertisement from R1; this route gets
quickly installed in the FIB (in under 4ms) on both routers,
and then R2 quickly withdraws its own direct route. At this
point all three routers have faulty data planes.

The HBG shown in Fig. 5 points to the soft reconfiguration
on R1 as the root cause of the policy violation (and potentially
to the TTY0 console changes); this information, coupled with

a version system for configurations is enough to allow easy
manual rollback, and creates the premises for automated
rollback out.

Now consider the timing of updates for the data plane
verifier: if it only sees the new FIB from R3, the verifier
will conclude that the path is R1 − R2 − P , and satisfies the
policy; in practice the path will be R1 −P . The verifier misses
the problem because it has an inconsistent snapshot of the
data plane. Using the HBG, it can catch this inconsistency:
the HBG on R3 contains a route via R1 that has not been
announced in the HBG received from R1. Consequently, the
verifier can wait until it receives the up-to-date HBG from R1
before verifying the data plane.

8 DISCUSSION
Ensuring networks work correctly as specified by operator
policy is an important yet so far elusive goal. In this position
paper, we have argued for the need to integrate data plane
verification into the control plane in a non-intrusive way. By
monitoring control plane input and output we can construct
a network-wide happens-before graph (HBG) that helps in
reasoning about the provenance of data plane entries and thus
enables sound verification and automated repair. We propose
to capture FIB updates on all routers and run the verifier
to check for correctness before we install updates. Finally,
distributed verification is made possible by the data plane
consistency information provided by the HBG.

No solution is a panacea, though, and in the following we
discuss limitations of our approach. First, we cannot avoid all
policy violations: when a route is withdrawn because a link
goes down and the withdrawal results in a policy violation,
blocking the withdrawal would have no good effects because
the traffic would be black holed anyways.

Another limitation is that our approach cannot directly an-
swer what-if questions, like control plane verifiers can (with
limitations). One approach in this direction is to leverage
ideas from CrystalNet [27] that runs an emulated copy of the
network and can inject faults.

When repairs are possible, their correctness depends on:
(i) the precision of the happens-before relationships, to make
sure we track down the actual root cause of a violation; and
(ii) deterministic control-plane execution, to make sure that
the control plane will converge to a previously working state
given previously seen inputs (i.e., it is memoryless).

Deterministic control-plane execution is particularly im-
portant as it enables us to reason about network correctness,
without a model, by simply observing that the network was
previously correct given a different set of inputs. While
routing outcomes are typically deterministic in the case of
intra-domain protocols (e.g. OSPF, IS-IS), this is not neces-
sarily true for BGP. Fortunately, BGP determinism can be
guaranteed with the help of extra mechanisms such as BGP
Add-Path [2], which is widely-available in today’s platforms
and does not hamper BGP flexibility.

9 ACKNOWLEDGMENTS
This work is supported in part by the Superfluidity H2020
project (Horizon 2020, European Commission) grant 671566
and National Science Foundation grant CCF-1637427.

REFERENCES
[1] GNS3: The software that empowers network professionals.
[2] IP routing: BGP configuration guide, Cisco IOS XE release 3S - BGP

additional paths. http://cisco.com/c/en/us/td/docs/ios-xml/ios/iproute
bgp/configuration/xe-3s/irg-xe-3s-book/irg-additional-paths.html.

[3] Quagga routing suite. http://www.nongnu.org/quagga.
[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach

to network configuration verification. In SIGCOMM, 2017.
[5] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Don’t

mind the gap: Bridging network-wide objectives and device-level
configurations. In SIGCOMM, 2016.

[6] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity of
network management. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2009.

[7] T. Benson, A. Akella, and D. A. Maltz. Mining policies from enterprise
network configuration. In Internet Measurement Conference (IMC),
2009.

[8] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo. The good, the
bad, and the differences: Better network diagnostics with differential
provenance. In SIGCOMM, 2016.

[9] Cisco Systems. BGP best path selection algorithm. http://cisco.com/c/
en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html.

[10] Cisco Systems. Cisco IOS debug command reference, release
12.2. http://www.cisco.com/c/en/us/td/docs/ios/12 2/debug/command/
reference/122debug/dbfintro.html.

[11] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
version 1.2. RFC 5246, RFC Editor, August 2008. https://www.ietf.
org/rfc/rfc5246.txt.

[12] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson. The matter
of Heartbleed. In Internet Measurement Conference (IMC), 2014.

[13] A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, and M. Vechev.
SDNRacer: Concurrency analysis for software-defined networks. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2016.

[14] A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vechev. Network-
wide configuration synthesis. In International Conference on Computer
Aided Verification (CAV), 2017.

[15] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar,
and G. Varghese. Efficient network reachability analysis using a suc-
cinct control plane representation. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016.

[16] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. A general approach to network configu-
ration analysis. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2015.

[17] A. Gember-Jacobson, A. Akella, R. Mahajan, and H. Liu. Automati-
cally repairing network control planes using an abstract representation.
In ACM Symposium on Operating Systems Principles (SOSP), 2017.

[18] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast
control plane analysis using an abstract representation. In SIGCOMM,
2016.

[19] A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and R. Mahajan. Man-
agement plane analytics. In Internet Measurement Conference (IMC),
2015.

[20] Juniper Networks. Example: Configuring BGP trace oper-
ations. https://www.juniper.net/documentation/en US/junos/topics/
topic-map/bgp-troubleshooting.html.

[21] Juniper Networks. Understanding BGP path selection.
http://juniper.net/documentation/en US/junos12.1/topics/reference/
general/routing-ptotocols-address-representation.html.

[22] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real time network policy checking using header space
analysis. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.

[23] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012.

[24] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow:
Verifying network-wide invariants in real time. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2013.

[25] H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS
protocol: A systematic analysis. Technical Report 339, 2013.

[26] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[27] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan. Crystalnet: Faithfully emulat-
ing large production networks. In Proc. of the 26th Symposium on
Operating Systems Principles (SOSP).

[28] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking: language, execution and optimization. In ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2006.

[29] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declar-
ative routing: extensible routing with declarative queries. In ACM
SIGCOMM Computer Communication Review, volume 35, pages 289–
300. ACM, 2005.

[30] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese.
Checking beliefs in dynamic networks. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2015.

[31] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the data plane with Anteater. In SIGCOMM, 2011.

[32] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev.
SDNRacer: Detecting concurrency violations in software-defined net-
works. In ACM SIGCOMM Symposium on Software Defined Network-
ing Research (SOSR), 2015.

[33] L. Ryzhyk, N. Bjørner, M. Canini, J.-B. Jeannin, C. Schlesinger, D. B.
Terry, and G. Varghese. Correct by construction networks using step-
wise refinement. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

[34] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. SymNet: scal-
able symbolic execution for modern networks. In SIGCOMM, 2016.

[35] K. Subramanian, L. D’Antoni, and A. Akella. Genesis: Synthesizing
forwarding tables in multi-tenant networks. In SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2017.

[36] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and
Z. Tatlock. Scalable verification of border gateway protocol configura-
tions with an SMT solver. In ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, (OOPSLA), 2016.

[37] G. C. Whittaker. Network outages like NYSE, United Airlines, are the
new natural disasters. http://bit.ly/1HW9wgr, July 2015.

[38] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Diagnosing
missing events in distributed systems with negative provenance. In
SIGCOMM, 2014.

[39] W. Zhou, D. K. Jin, J. Croft, M. Caesar, and P. B. Godfrey. Enforcing
customizable consistency properties in software-defined networks. In
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), 2015.

[40] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo,
and M. Sherr. Distributed time-aware provenance. In International
Conference on Very Large Data Bases (VLDB), 2013.

[41] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient
querying and maintenance of network provenance at internet-scale.
In ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2010.

http://cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-additional-paths.html
http://cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-additional-paths.html
http://www.nongnu.org/quagga
http://cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
http://cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
http://www.cisco.com/c/en/us/td/docs/ios/12_2/debug/command/reference/122debug/dbfintro.html
http://www.cisco.com/c/en/us/td/docs/ios/12_2/debug/command/reference/122debug/dbfintro.html
https://www.ietf.org/rfc/rfc5246.txt
https://www.ietf.org/rfc/rfc5246.txt
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/bgp-troubleshooting.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/bgp-troubleshooting.html
http://juniper.net/documentation/en_US/junos12.1/topics/reference/general/routing-ptotocols-address-representation.html
http://juniper.net/documentation/en_US/junos12.1/topics/reference/general/routing-ptotocols-address-representation.html
http://bit.ly/1HW9wgr

	Introduction
	Motivation
	Integrating Verification and Repair into the Control Plane
	Tracking the Control Plane
	Happens-Before Relationships
	Tracking HBRs
	Happens-before Graph

	Detecting Policy Violations
	Repairing policy violations
	Feasibility
	Discussion
	Acknowledgments

